
Download class materials from

university.xamarin.com

Intro to Testing

XTC101

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2018 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Describe the importance of testing

2. Compare the types of tests

3. Creating unit tests

Objectives

Describe the importance of testing

1. Importance of testing

2. Mobile specific issues

3. Outside-in vs. Inside-out testing

Tasks

❖ We must test our applications to

ensure high quality and that they do

what they are supposed to do in all

cases

Importance of testing

Traditional testing

❖ Traditional testing has people

perform limited or superficial testing

on a device

❖ The thoroughness of this style of

testing depends on the skill of the

tester

❖ Easy to miss new problems

introduced in other areas of our

programs we did not expect

Automated testing

❖ As the number of features and

devices grows, it becomes

impractical to manually test our

applications

❖ Instead, we can automate our

testing to make sure that we test

not just the new things being

added, but also the existing feature

set to make sure we have not

changed the expected behavior

❖ Mobile applications have unique challenges that can be difficult to test

manually

Mobile-specific issues

Fragmentation Different Devices

Constant

day-to-day use

Network

Connectivity

Service Availability

❖ There are two different automated testing approaches commonly used

Testing approaches

Inside-out

Testing

Outside-in

Testing

The approach you take determines where you start testing

❖ Inside-out testing, commonly

known as unit testing, performs

tests on the individual classes and

functions of the application

independent of the UI

Inside-out testing

Model

• Model Classes

Business Layer

• Supporting Classes

Service Layers

• Testing or Simulating Service Access

User Interface

• View Model classes

• User Interface Testing

Specifications

❖ Unit tests check the smallest units of work to ensure they behave as

expected

Example of inside-out testing

var original = "1-855-XAMARIN";
var expected = "1-855-9262746";

var actual = PhonewordTranslator.ToNumber(original);

Assert.AreEqual(expected, actual,
"The expected phone numbers are not equivalent");

Testing a single method on an applications class

❖ Outside-in testing, also known as

acceptance testing, checks that the

final application as a whole

conforms to the specification

Outside-in testing

Model

• Model Classes

Business Layer

• Supporting Classes

Service Layers

• Testing or Simulating Service Access

User Interface

• View Model classes

• User Interface Testing

Specifications

Example of outside-in testing

Feature: Manage the management of tasks

Scenario: Delete an existing task

Given I am on the Task Details screen for the ”Get Milk" task

When I press the Delete button

Then I should be on the TaskyPro screen

And I should not see the "Get Milk" task in the list

When /^I press the Delete button$/ do
tap("button text:'Delete'")

end

❖ Both approaches have their purpose, often want to perform both styles

of testing in your overall testing plan

Inside-out vs. outside-in

Inside-Out Testing Outside-In Testing

Allows you to test for intricate aspects

of the system

Allows you to test the UI, which is what the

application will be signed-off on

The UI is often not tested at all Does not test unexpected error and edge

cases and can often miss internal behavior

Flash Quiz

① What are some of the issues with testing mobile apps (choose all that

apply)

a) Fragmentation

b) Network Connectivity

c) Access to Services

d) Interruptions

Flash Quiz

① What are some of the issues with testing mobile apps (choose all that

apply)

a) Fragmentation

b) Network Connectivity

c) Access to Services

d) Interruptions

Flash Quiz

② Outside-in testing refers to

a) Testing the application outside using Wifi then going indoors

b) Testing the actual features of an application

c) Testing that the user interface looks right

Flash Quiz

② Outside-in testing refers to

a) Testing the application outside using Wifi then going indoors

b) Testing the actual features of an application

c) Testing that the user interface looks right

Flash Quiz

1. Importance of testing

2. Mobile specific issues

3. Outside-in vs. Inside-out testing

Summary

Compare the types of tests

1. Types of tests

2. Understanding the tests

Tasks

❖ There are many

types of testing you

can perform on

your code

❖ # of tests should

increase the further

down the pyramid

you go

Types of Tests

❖ A unit test takes a small unit of the application (typically a method),

isolates it from the remainder of the code, and verifies that it behaves

exactly as expected

What is a unit test?

CalculateTip()

15% tip results in proper total

20% tip results in proper total

Negative tip results in exception

…

Possible Calculate Tip unit tests

Here, we will test just this single

method to calculate a tip –

notice that we have multiple

tests to try different inputs and

outputs

❖ A component/module test validates isolated modules (objects, classes,

etc.) as a whole with external dependencies simulated/stubbed out

What is a component test?

Calculator

Add two numbers

Subtract a number

Divide by 2

Validate final result

Possible Calculator component tests

Component tests would test the Calculator class as a whole, executing multiple

methods to check state management and proper totals

Add

Subtract

...

❖ Integration tests verify that classes work together as expected

What is an integration test?

Student Course

Add Student to course, shows up in roster

Student has proper pre-requisites

Total # of students incremented

Max # students not exceeded

...

Possible Enrollment integration testsHere, we will want to test both

the Student class and the

Course classes together to

verify the combination

❖ Acceptance tests ensure that the finished product conforms to original

designs and/or specification and is fit for the purpose it is intended

What is an acceptance test?

Specifications

Acceptance Tests

❖ UI Testing validates the application by interacting with the UI and using

the app like the typical user

❖ This is often done manually by the QA group (at great time + expense)

What is a UI test?

Understanding the Tests

"You would have unit tests for individual classes in the domain and database

mapping layers. In most of these unit tests, you might not even connect the database.

You would stub the database out.”

"Acceptance tests view the system more as a black box and test more end to end

across the whole system”.

"But with the functional (acceptance) tests, which go end to end,

you would want everything connected.”

− Martin Fowler

Flash Quiz

① A test that tests a single piece of isolated functionality (e.g. a method or

property) is a _________.

a) Unit test

b) Regression test

c) Integration test

d) Acceptance test

Flash Quiz

① A test that tests a single piece of isolated functionality (e.g. a method or

property) is a _________.

a) Unit test

b) Regression test

c) Integration test

d) Acceptance test

Flash Quiz

② If Bill wants to make sure that his new class works well with Susan's

existing class, he should write a(n) _______.

a) Unit test

b) Regression test

c) Integration test

d) Acceptance test

Flash Quiz

② If Bill wants to make sure that his new class works well with Susan's

existing class, he should write a(n) _______.

a) Unit test

b) Regression test

c) Integration test

d) Acceptance test

Flash Quiz

1. Types of tests

2. Understanding the tests

Summary

Creating unit tests

1. Unit Testing Benefits

2. Testing Frameworks

3. Writing test classes

4. Validating conditions

5. Running your tests

Tasks

❖ Testing can improve app quality and reduce development costs

Benefits of Unit Tests

Reduces bugs Adds documentation Improves your

design

Reduce the overall

cost of change

The cost of not testing

❖ “… the cost to fix an error found after product release was four to five

times as much as one uncovered during design, and up to 100 times

more than one identified in the maintenance phase.”

http://blog.celerity.com/the-true-cost-of-a-software-bug

COST OF A SOFTWARE BUG

$100 $1,500 $10,000
If found in Gathering

Requirements phase

If found in QA Testing

phase

If found in Production

The cost of not testing: reputation

❖ A Unit Test should be:

▪ Isolated and focused

▪ Self contained

▪ Independent

▪ Fast

▪ Repeatable

▪ Maintainable

Unit test requirements

❖ Unit Testing is almost always done

with a unit testing framework

▪ Visual Studio for Mac uses

NUnit

▪ Visual Studio on Windows uses

MSTest, but can handle several

others

Testing Frameworks

❖ There are several useful debugging

features in Visual Studio for Mac

that you should enable

▪ From the Menu

View > Unit Testing

View > Pads > Unit Tests

▪ Preferences
Text Editor > Source Analysis

Visual Studio for Mac Integration

❖ Visual Studio uses MSTest, but you can add NUnit as a test execution

engine via NuGet or through the Tools > Extensions and Updates dialog

Visual Studio Integration

❖ Several project types are included with Visual Studio

Creating a Test Project

Creates a Xamarin.UITest project

which is used to perform

automated acceptance tests,

there are versions for cross-

platform, iOS-specific and

Android-specific.

XTC102 covers this in detail

❖ Several project types are included with Visual Studio

Creating a Unit Test Project

This creates a desktop NUnit test

project that uses the full

Mono/.NET technology stack. This

is a good project to test code

which is shared between your

platform projects.

❖ Test classes contain test methods identified using attributes

Writing test classes

[TestFixture]
public class PertTests
{

[Test]
public void PertTest_CheckForEquality_ShouldBeTrue ()
{

// Unit Test goes here
}
...

}

❖ Test simplest thing possible (unit)

▪ Simple != Simplistic

❖ Test behaviors not methods

▪ Very common to have several unit

tests for a single method

❖ If the tests are hard to write …

▪ Requirements may be too vague

▪ Can indicate problems in the design

Writing unit tests

❖ Unit tests should focus on a single aspect of the system under test to

validate that it works as intended; use separate tests for other variations

Unit test = test one thing

❖ Useful to use a naming convention to more easily identify its purpose

▪ System under test (SUT)

▪ What is being tested

▪ Expected result

Naming your unit tests

TableSource_DataIsNull_ShouldThrowException()

PertTest_CheckForEquality_ShouldBeTrue ()

TestCountProperty()

❖ Unit tests typically have three steps:

What does a unit test look like?

public void PertTest_CheckForEquality_ShouldBeTrue()
{

double likelyAmount = 20;
double bestCaseAmount = 12;
double worstCaseAmount = 40;
double expectedResult = 22;

double actualAmount = Calculations.Estimate(
likelyAmount, bestCaseAmount, worstCaseAmount);

Assert.AreEqual (expectedResult, actualAmount);
}

① Arrange

② Act

③ Assert

❖ Use the Assert class to verify results; a test fails if any assert fails or if

the method throws an unexpected exception

Validating conditions

[Test]
public void PertTest_CheckForEquality_ShouldBeTrue ()
{

// Arrange (setup test)
...

// Act (perform test)
...

// Assert (verify test)
Assert.AreEqual (expectedResult, actualAmount);

}

❖ The Assert class has several validation methods

Assertion types

AreEqual Contains Greater

AreNotEqual AreSame GreaterOrEqual

IsTrue AreNotSame Less

IsFalse IsInstanceOfType LessOrEqual

IsNotNull IsAssignableFrom IsNaN

IsEmpty IsNotAssignableFrom That

These methods are the ones you will use most often

Creating unit tests

Demonstration

❖ Test edge cases: code you expect to execute rarely or only during failure

conditions

Testing exceptional conditions

[Test]
[ExpectedException(typeof(ArgumentNullException))]
public void Adapter_IfPassedNull_ThrowsException()
{

var adapter = new MyDataAdapter(null);
}

If the specified exception is not thrown by the test method, then the unit test will be

marked as failed

❖ Better approach for exception testing is to use Assert.Throws or

Assert.DoesNotThrow which take delegates to test

Testing exceptional conditions

[Test]
public void Adapter_IfArraySizePassedIsZero_ThrowsException()
{

Assert.Throws<ArgumentNullException>(() => {
// Test code goes here

})
}

❖ When using the .NET NUnit Library Project, the IDE includes support to

run the tests through the Unit Tests pad and through test "bubbles"

Running your tests

Can click on

bubbles next to

test methods to

run or debug a

test, these change

color based on last

run result

❖ Can ignore tests using the [Ignore] attribute – useful if code has

changed and the test has not been updated yet

Ignoring tests

[Test]
[Ignore("Fix this in V2")]
public void DESAlgo_Use128BitKey_Creates1024Cipher()
{
...

}

❖ Alternatively, can add a "time-bomb" to make sure invalid tests get

updated

Ignoring tests

[Test]
public void DESAlgo_Use128BitKey_Creates1024Cipher()
{

if (DateTime.Now > new Date(2015, 05, 30)) {
Assert.Fail("Fix this test");

}
return;
// Real test (not being run) follows
...

}

❖ Common code can be refactored

into either per-class or per-test

initialization using attributes on

methods in the testing class

[TestFixtureSetUp]

[TestFixtureTearDown]

[SetUp]

[TearDown]

Initializing tests and test methods

TestFixtureSetUp

Run Test #1

SetUp

TearDown

Run Test #1

SetUp

TearDown

TestFixtureTearDown

Comparing MSTest and NUnit

MSTest NUnit

[TestClass] [TestFixture]

[TestMethod] [Test]

[ClassInitialize] [TestFixtureSetup]

[ClassCleanup] [TestFixtureTearDown]

[TestInitialize] [SetUp]

[TestCleanup] [TearDown]

[AssemblyInitialize] N/A

[AssemblyCleanUp] N/A

Flash Quiz

① What are some aspects of unit tests (choose all that apply)

a) Arrange-Act-Assert

b) Unexpected exceptions cause the test to fail

c) Should always use the Assert.AreEqual operation

d) They should test integration and database connectivity

e) They should be as small and fast as possible

Flash Quiz

① What are some aspects of unit tests (choose all that apply)

a) Arrange-Act-Assert

b) Unexpected exceptions cause the test to fail

c) Should always use the Assert.AreEqual operation

d) They should test integration and database connectivity

e) They should be as small and fast as possible

Flash Quiz

② NUnitLite is:

a) A framework for small applications

b) A framework for running tests on devices

c) A testing framework with fewer calories

Flash Quiz

② NUnitLite is:

a) A framework for small applications

b) A framework for running tests on devices

c) A testing framework with fewer calories

Flash Quiz

Creating unit, regression and integration tests

Individual Exercise

1. Unit Testing Benefits

2. Testing Frameworks

3. Writing test classes

4. Validating conditions

5. Running your tests

Tasks

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

