
Download class materials from 

university.xamarin.com

Diagnosing Memory 

Management Issues

XAM370



Information in this document is subject to change without notice. The example companies, 

organizations, products, people, and events depicted herein are fictitious. No association with 

any real company, organization, product, person or event is intended or should be inferred. 

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other 

intellectual property rights covering subject matter in this document. Except as expressly 

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document 

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2018 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual 

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other 

countries.

Other product and company names herein may be the trademarks of their respective owners.



1. Identify and fix memory leaks in your 

code

2. Recognize and fix Xamarin.iOS specific 

memory problems

3. Recognize and fix Xamarin.Android

specific memory problems

Objectives



Identify and fix 

memory leaks in your code



1. Find memory leaks in your code

2. Fix common leaks in managed code

Tasks



❖ .NET/Mono uses a Garbage 

Collector (referred to as GC) which 

periodically stops your program and 

frees the memory your app is no 

longer using 

❖ This happens automatically as 

needed

Reminder: Memory



❖ Your application works with two types of memory, both allocated from 

the same process space; apps must be concerned about both types

Defining memory

Process

Memory

UIView
UIImage
MKMapView
...
Activity
Intent
TextView
...

Managed Memory

C# and .NET 

objects are 

allocated here -

this is all GC 

knows about



❖ Some objects live in both the managed and the native world and must 

be treated properly to ensure that they are freed when the app is 

finished with them … but not before!

Objects in memory

class UIKit.UIImage

class Android.App.
Activity

[UIImage]

class android.app.
activity

Xamarin (managed) Native (iOS/Android)

B
in

d
in

g
 L

a
ye

r



❖ Memory leaks aren't as common when a GC is involved but can still 

happen in a few specific scenarios

Memory Leaks in the GC world

Object

Holding onto 

references

Thread Local values

object data

Objects passed into 

the native platform 

("pinned")



❖ Several tools you can use to help check the memory allocations in your 

Xamarin application 

Monitoring memory allocations

Instruments Android

Profiler
Xamarin Profiler Visual Studio

Profiling Tools

All of these tools allow you to look for strange patterns – e.g. an unexpectedly high 

number of some type of object, larger than normal working set, etc.



❖ Xamarin Profiler is a managed memory monitor available with an 

enterprise license that can help identify all the managed objects being 

allocated and retained in your app

Xamarin Profiler



Using the Xamarin Profiler to monitor allocations

Demonstration



❖ GC_MAJOR reports current and previous memory usage for major heap 

and LOS; watch these values to identify potential leaks

Monitoring memory growth

GC_MAJOR: (user request) pause 6.53ms, total 6.54ms, bridge 0.00ms 
major 1008K/16912K los 64K/0K

How much memory is 

currently in use by the 

major generation
How much memory was in 

use prior to this collect?



❖ Can use WeakReference as a diagnostic tool if you suspect an object 

is not being collected when you expect it to

Checking for a leak

DataLoader dl = new DataLoader ();
WeakReference wr = new WeakReference (dl);
...
dl = null;
...
GC.Collect ();
if (wr.IsAlive) {

Debug.WriteLine ("DataLoader still alive");
}



❖ A WeakReference is a reference to an object that does not protect the 

object from being collected by the GC; it allows your application to 

access the wrapped object as long as the GC has not collected it yet

What is a weak reference?

I've got your 

back for now, but 

if there's any sign 

of trouble, I'm 

outta here!

WeakReference



public class MemoryLeakCheck<T> where T : class
{

string filename; int lineNumber; WeakReference<T> reference;

public MemoryLeakCheck(T theObject, [CallerFilePath]string filename = "",
[CallerLineNumber]int lineNumber = 0) {

this.reference = new WeakReference<T>(theObject);
this.filename = filename;
this.lineNumber = lineNumber;

}

public void Check() {
GC.Collect();
Debug.Assert(!reference.TryGetTarget(out T _),

$"Object allocated at {filename}-{lineNumber} is still alive.");
}

}

Checking a weak reference?



❖ Can use a finalizer as a diagnostic to identify when an object is being 

collected

Another technique: Finalizers

public class IThinkImAloneNow
{

...
#if DEBUG

~IThinkImAloneNow() {
Console.WriteLine ("I'm about to be collected!");

}
#endif
}

Remember that finalizers are expensive and should be avoided in production code



❖ Delegates (and events) keep the subscriber object alive as long as the 

publisher is alive!

Watch out for hidden references!

public override void ViewDidAppear (bool animated) {
base.ViewDidAppear (animated);
NSNotificationCenter.DefaultCenter.AddObserver(

UIDevice.BatteryStateDidChangeNotification , OnChargingChanged);
}

private void OnChargingChanged (NSNotification notification) { ... }



❖ When you wire up a .NET delegate to an instance method, it must hold 

a reference to the owning instance

Delegate references

...DefaultCenter.AddObserver(..., OnChargingChanged);

...DefaultCenter.AddObserver(..., this.OnChargingChanged);

Shorthand for:

Which is shorthand for:

...DefaultCenter.AddObserver(..., 
new Action<NSNotification>(this.OnChargingChanged));



❖ When you wire up a .NET delegate to an instance method, it must hold 

a reference to the owning instance

Delegate references

public class Action<T> : Delegate
{

public object Target { get; }
public MethodInfo Method { get; }
...

}

Strong 

reference 

held by 

delegate

...DefaultCenter.AddObserver(..., 
new Action<NSNotification>(this.OnChargingChanged));



❖ Delegates become a problem when the publisher of the event outlives

the subscriber to the event

Why is this a problem?

UIDevice.BatteryStateDidChangeNotification
NSNotificationCenter

I live forever..

View

Controller

I'm supposed to live 

only while the user 

works with me

.. And immortality is 

bestowed upon you!



❖ Follow .NET event guidelines: always unsubscribe from delegates

Fixing the delegate problem

public override void ViewDidAppear (bool animated) {
base.ViewDidAppear (animated);

}

public override void ViewDidDisappear (bool animated) {
base.ViewDidDisappear (animated);

}

token = NSNotificationCenter.DefaultCenter.AddObserver (
UIDevice.BatteryStateDidChangeNotification , OnChargingChanged);

NSObject token;

NSNotificationCenter.DefaultCenter.RemoveObserver(token);



Finding and fixing delegate reference leaks

Individual Exercise



❖ ThreadLocal<T> is a convenient way to create strongly-typed, thread-

scoped values which are unique per-thread

Thread Locals

var RNG = new ThreadLocal<Random>(() =>
new Random(new object().GetHashCode()));

Parallel.For (0, 1000, i => {
// Need a truly random # for each thread
int rndNumber = RNG.Value.Next (100);
...

});

Here we allocate a unique Random object for each thread – the passed delegate to 

ThreadLocal<T> is executed once (1st time) on each thread that accesses Value



❖ Thread local values are stored in a static list and are not cleaned up by 

default until sometime after the thread exits

Problem with Thread Locals

new Random

new Random

new Random

new Random

RNG.Value

T1

T2

T3

T4

GC GC

What if I never exit?



❖ Should make sure to dispose ThreadLocal<T> when all your threads 

are done using it – this will release all the underlying values; be aware 

that it does not call Dispose on the values!

Cleaning up thread locals

var RNG = new ThreadLocal<Random>(() =>
new Random(new object().GetHashCode()));

Parallel.For (0, 1000, i => {
// Need a truly random # for each thread
int rndNumber = RNG.Value.Next (100);
...

});
RNG.Dispose();



1. Find memory leaks in your code

2. Fix common leaks in managed code

Summary



Xamarin.iOS



Tasks

❖ Identify strong reference cycles

❖ Dispose native resources

❖ Manage event handler lifecycles



retain count

NSObject

❖ iOS uses reference counting to manage memory (manual or automatic)

Memory Management in iOS

A

1

[[A alloc] init]

B

2

B = [A retain]

A

1

[A release]

B

[B release]

0

ARC (Automatic Reference Counting) makes this easier to work with in Obj-C and Swift, 

but memory leaks and dangling pointers are still major pain points in native iOS dev



❖ Xamarin.iOS creates a managed wrapper, called a peer object, for every 

native object accessed by the Xamarin.iOS runtime

Peer wrapper objects

UIKit.UIButton
(peer object)

[UIButton]
(native object)IntPtr Handle

Allocated by Xamarin.iOS 

and collected by the GC

Allocated by the iOS runtime 

and reference counted



❖ Peer object increment the retain count; it is released when the managed 

peer is disposed or finalized

Peers: retain count

var b = new UIButton(...) [[UIButton alloc] init] 1

GC Collect [b release] 0
b = null;

b.Dispose(); [b release] 0

…

or



❖ Xamarin.iOS supports two types of peer objects:

Peer object types

User PeersFramework Peers



❖ Framework peers are built-in, stateless types that wrap known iOS 

objects

What is a Framework Peer?

UIViewController
UIView
UIButton
CNContact
CGPDFDocument
WKWebView
MKMapView
...



❖ Peers always call the native object to get or set the state

What is a Framework Peer?

UIKit.UIButton [UIButton]
Handle

state

UIButton button = new UIButton();
button.SetTitle("Click Me", UIControlState.Normal);
if (button.CurrentTitle == "Click Me") { ... } C#

[button setTitle:@"Click Me" forState:UIControlStateNormal]
button.currentTitle



❖ Framework peers are created to represent a native object when your 

code first accesses the object (e.g. when it is created, or accessed 

through a property)

Framework Peers: creation

UIButton button = (UIButton) View.Subviews[0];

Runtime will construct a new wrapper to 

represent the button if one did not exist yet



❖ Framework peers can be collected when not referenced by managed 

code; runtime will re-create a new wrapper if necessary

Framework Peers + GC

partial void OnShowDetails(UIButton sender)
{

... // Use button
}

Passed peer instance may, or may not be the same instance seen 

previously – however it will always refer to the same native object handle



❖ User peers (sometimes called derived objects) are custom managed 

types which derive from a built-in iOS wrapper

What is a User Peer?

UIView [UIView]
retains

FootnoteView
We are deriving from UIView, 

but user peers are created from 

any framework peer base class



❖ User peers can hold managed state – e.g. things which are not part of 

the native control state

How are user peers different?

public class FootnoteView : UIView
{

public int FootnoteId { get; set; }
public string FootnoteText { get; set; }
...

}

These fields are part of the managed object only, iOS knows nothing about them



❖ Having managed state changes how the runtime must treat the object

User peers + GC

public override void ViewDidLoad()
{

base.ViewDidLoad();
this.Add(new FootnoteView {FootnoteId = 1, 

FootnoteText = " nobody reads me" });
}

We are not holding onto the managed object here – it is kept alive 

because it has been added into the view hierarchy



❖ Xamarin.iOS keeps user peers alive even if there are no references in 

your managed code; this ensures that state is preserved

User peers: staying alive!

public class MyViewController : UIViewController
{

public override void ViewDidDisappear() {
// Get the footnote we displayed
FootnoteView fn = (FootnoteView) View.Subviews[0];
int id = fn.FootnoteId;
... // state is there because it's the same wrapper

}
...

}



❖ Xamarin.iOS ensures state is preserved by rooting any user peer that has 

no managed references; this keeps it from being collected

User Peer: preserving state

Footnote
View

MyView
Controller

[UIView]
retains

[UIView
Controller]

retains

retains

(superview)

Problem: 

No user code has a 

reference to either 

of the peer objects; 

normally this would 

allow the GC to 

collect them ...

state

state

state

state



❖ Xamarin.iOS ensures state is preserved by rooting any user peer that has 

no managed references; this keeps it from being collected

User Peer: preserving state

Footnote
View

MyView
Controller

[UIView]
retains

[UIView
Controller]

retains

retains

(superview)

GC Handle (root)

GC Handle (root)

2

2



❖ Holding a managed reference to a peer from a user peer creates a 

reference cycle that cannot be broken automatically by GC

User Peers + reference cycles

class MyViewController {}

class FootNoteview : UIView {
public MyViewController Parent;

}
...
myVC.Add(new FootnoteView {

Parent = this
});

MyView
Controller

Footnote
View

[UIView
Controller]

retains

[UIView]
retains

retains

(superview)

Parent
property

GC Handle (root)

2

21



❖ Must manually break the reference cycle on one side or the other

User Peers: breaking the reference

MyView
Controller

retains

Parent
property

Footnote
View

GC Handle (root)

Parent = null

[UIView
Controller]

retains

(superview)

1

[UIView]
retains

2

0

1



❖ Must manually break the reference cycle on one side or the other

User Peers: breaking the reference

MyView
Controller

retains

Parent
property

Footnote
View

GC Handle (root)

Dispose() [UIView
Controller]

retains

(superview)

1

[UIView]
retains

2

0

1



Identifying and breaking strong reference cycles

Group Exercise



❖ When you wire up an event handler on a framework peer, this adds state 

to the peer object, so Xamarin.iOS promotes the object to a user peer

Framework peers > User peers

public class MyViewController : UIViewController
{

public override void ViewDidLoad() {
...
ProcessButton.TouchUpInside += OnProcess;

}

void OnProcess(object sender, EventArgs e) { ... }
}



❖ The two user peers keep each other alive – this time due to the event 

handler (vs. a Parent property), but the end result is the same.. the 

graph will not be cleaned up properly!

What happens?

MyView

Controller
UIButton

TouchUpInside

this.OnProcess

retains (iOS)

strong reference (.NET)



❖ Never forget: always unsubscribe from event handlers

Fixing the event problem

public override void ViewDidAppear (bool animated) {
base.ViewDidAppear (animated);
ProcessButton.TouchUpInside += OnProcess;

}

public override void ViewDidDisappear (bool animated) {
base.ViewDidDisappear (animated);
ProcessButton.TouchUpInside -= OnProcess;

}

This is only necessary for manually wired events – if you use the designer to subscribe to 

UI actions, it is handled by the iOS runtime and doesn't use the event directly



Watch out for peer promotions

Group Exercise



✓ Prefer full delegate methods over lambdas – it makes it easier to see 

and understand strong references

✓ Call Dispose() to release native resources immediately (vs. waiting on 

a GC) when you are finished with a peer wrapper

✓ Always unsubscribe from events you manually wire up; alternatively, use 

the Storyboard to connect events which can then be cleaned up 

automatically

Xamarin.iOS Tips



Xamarin.Android



❖ Improve garbage collector 

performance

❖ Free native resources

Tasks



❖ Android also uses Garbage Collection to clean up resources

Memory Management in Android

Xamarin 

Garbage 

Collector

Process

Memory

Xamarin

Managed 

Memory

Android 

Managed 

Memory

Android 

Garbage 

Collector

These two systems must work together to cleanup memory



❖ Xamarin.Android also has peer objects used to reference the native Java 

objects known to the Android JVM 

Android + Xamarin

namespace Android.Runtime
{

public interface IJavaObject : IDisposable
{

// JNI reference to Java object this is wrapping
public IntPtr Handle { get; set; }
...

}
}



❖ IJavaObject keeps a strong reference (JNI handle) to the platform 

Java object to keep it alive while the managed object is alive

GC process [Android]

IJavaObject
Some Java

ObjectIntPtr Handle

Allocated and collected 

by Xamarin GC

Allocated by Android and 

collected by Android's GC

Java.Lang.Throwable

Java.Lang.Object

Treated as a GC root 

by Android



GC process [Xamarin]

GC Collect
Can collect 

object?

Is Peer 

Object?

Yes Replace JNI handle 

with Weak Handle

Yes

Force Android GC
JNI handle 

collected?

Collect object
No

Yes

Replace JNI weak 

handle with strong 

handle reference

NoPeer object 

kept alive

Note: this is a simplified view of what happens during a collection, the implementation 

has quite a few more details and special cases to deal with!



❖ Xamarin.Android does not suffer from the cyclic reference problem 

encountered in iOS, but has unique issues of it's own

Disadvantages to having two GCs

GCs take longer App memory 

pressure is increased



❖ Should Dispose peer objects (using is your friend) and set references 

to null so GC can clean things up more quickly

Improving GC performance

static byte[] buf = new byte[1024];
...
using (Bitmap smallPic = BitmapFactory.DecodeByteArray(buf, ...))
using (Drawable dr = new BitmapDrawable(smallPic))
{

layout.Background = dr;
buf = null;

}



❖ Some objects are much larger than 

the peer object – for example 

images often take up a significant 

block of native memory but look 

like a small object to the runtime

Thinking about big objects

479k on disk

1,562k in memory

Bitmap

Peer object is 

~20 bytes



❖ When you have released/disposed a large object, it can be helpful to 

call GC.Collect or JavaSystem.Gc() to reduce the working set

Initiating a GC

async void LoadBitmap(string url)
{

using (HttpClient client = new HttpClient())
using (var bitmap = await BitmapFactory.DecodeStreamAsync(

await client.GetStreamAsync(url)))
{

... // Use bitmap
}
GC.Collect();

}



❖ GC cost for walking a peer object graph is significantly higher because it 

must look for both managed and Java relationships between objects

GC and Android types

class Tweet { ... }

class FeedActivity : ListActivity {
List<Tweet> tweets = new List<Tweet>(1000);

protected override void OnCreate (Bundle bundle) {
base.OnCreate(bundle);
ListAdapter = new ArrayAdapter<Tweet>(this,

Android.Resource.Layout.SimpleListItem1, tweets);
}

}

Here the GC will be forced 

to check all 1000 Tweet
objects to see if any 

reference another peer



GC and Android types

class Tweet
{ 

public string Id { get; set; }
public string Text { get; set; }
public List<Tweet> Retweets { get; set; }
public string CreatedAt { get; set; }
public List<string> Hashtags { get; set; }
public int FavoritedCount { get; set; }
public string InReplyTo { get; set; }
public string Language { get; set; }
public Place Location { get; set; }
...

}

Each tweet object has 

at least 6 additional 

references which 

need to be walked..



❖ When Xamarin GC runs, it will replace the strong JNI handle with a weak 

reference and invoke Android GC, which would then collect the Java 

bitmap

Why scan for relationships?

C# Object

Java Object

BitmapButton Bitmap
field

Java button Java bitmap
Visual tree

HandleHandle

No java references 

keeping this object alive



❖ Peers are scanned for relationships to ensure that each one is mirrored 

in the JVM – this keeps objects from being collected prematurely

Why scan for relationships?

C# Object

Java Object

reference

BitmapButton Bitmap
field

Java button Java bitmap
Visual tree

HandleHandle



❖ Instead, prefer to split the data away from your peer objects to a non-

peer object that holds the data and is rooted

Avoiding the peer walk

class Tweet { ... }
static class TweetData { ... } 

Can now be collected during a normal GC 

pass without involving peer scan

class FeedActivity : ListActivity {
... // no instance reference
ListAdapter = new ArrayAdapter<Tweet>(
this, ..., TweetData.All); 

}

No direct reference 

used which needs to 

be examined by GC

Note: this sort of split is only necessary for larger object graphs – a handful of references 

is fine and should not impact your performance by a significant margin



❖ If possible, try to avoid passing non-peer objects into Java methods

Boxing

class Tweet { ... }

class FeedActivity : ListActivity {

protected override void OnCreate (Bundle bundle) {
base.OnCreate(bundle);
ListAdapter = new ArrayAdapter<Tweet>(this,

Android.Resource.Layout.SimpleListItem1, TweetData.All);
}

}



❖ C# objects must be boxed to create a JVM representation of the object; 

intrinsic types (strings, numeric values and dates) are all special cased

Xamarin and Java VM

C# Object

Java Object

ArrayAdapter<Tweet>
ArrayAdapter

ArrayList

Tweet Tweet Tweet Tweet

Tweet Tweet Tweet Tweet

ListView



❖ Instead, do as much as possible in either C# or Java: interop is expensive

Stay in your yard

class Tweet { ... }
class TweetAdapter : BaseAdapter<Tweet> { ... }

class FeedActivity : ListActivity {

protected override void OnCreate (Bundle bundle) {
base.OnCreate(bundle);
ListAdapter = new TweetAdapter(TweetData.All);

}
}

Creating an 

adapter which 

conforms to an 

interface keeps 

all the data on 

the Xamarin side 

– the JVM simply 

invokes methods 

to retrieve data



❖ Instead, do as much as possible in either C# or Java, interop is expensive

Stay in your yard

C# Object

Java Object

TweetAdapter

List<Tweet>

Tweet Tweet Tweet Tweet

ListView



Show ListView memory and performance with a custom adapter

Demonstration



❖ Integration between Xamarin GC and JVM GC is performed through a 

native extension called the GC Bridge

GC Bridge

Process

Memory

Xamarin 

Managed 

Memory

Android 

Managed 

Memory

GC Bridge



❖ GC_ messages provide details about bridge and collection times

Monitoring Bridge performance

GC_MAJOR: (Minor allowance) pause 29.11ms, total 29.35ms, bridge 0.15ms major 
4048K/0K los 2766K/0K

Lower pause, bridge and total times are preferred



❖ Xamarin includes three different GC Bridge implementations

GC Bridge choices

Old New Tarjan

(Default)



Selecting a different GC bridge

bridge-implementation=old

bridge-implementation=new

bridge-implementation=tarjan



✓ Should call Dispose() to release the native resources immediately (vs. 

waiting on a GC) when you are finished with a peer wrapper

✓ Avoid placing a large numbers of references in peer objects, remember 

GC is more expensive for these special types

✓ Avoid passing pure C# custom types into Java APIs if possible

✓ Experiment with the GC Bridge options

Xamarin.Android Tips



✓ Xamarin.Forms internally understands the tips we've covered – platform 

visual things are always disconnected and disposed 

✓ Can still leak memory through traditional .NET techniques

✓ DO need to obey all the rules when creating custom renderers or effects 

which utilize the native platform

One more thing.. Xamarin.Forms



Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile


