
Download class materials from

university.xamarin.com

Design an MVVM

ViewModel in

Xamarin.Forms

XAM320

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2018 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Define Visual Behavior

2. Use Commands

3. Test MVVM based apps

Objectives

❖ MVVM is a layered, separated presentation pattern where a data

binding engine takes the place of the controller / presenter

[Reminder] Model-View-ViewModel

Model

ViewModel

View

data binding

events or observer

uses

uses

❖ You can create your own MVVM support, but there are several popular

MVVM libraries available for cross platform development

▪ Prism [pnpmvvm.codeplex.com]

▪ MvvmCross [github.com/MvvmCross]

▪ MvvmLight [codeplex.com/MvvmLight]

▪ ReactiveUI [reactiveui.net]

▪ Caliburn.Micro [github.com/Caliburn-Micro]

▪ MvvmHelpers [codeplex.com/MvvmHelpers]

▪ [your favorite goes here] ☺

MVVM Libraries

Define Visual Behavior

1. Control and activate events with

selection

2. Utilize properties to define Visual

Behavior

3. Employ Data Triggers

Tasks

❖ ViewModel is intentionally designed

to support the View, but should be

written to be UI-agnostic

▪ it should not have dependencies

on anything in Xamarin.Forms

View vs. ViewModel

Model

ViewModel

View

Each layer should only

have direct knowledge

about the layer below it

❖ Managing selection with MVVM provides a clean way to control and

activate elements without dealing with events

Selection in XAML

<ListView ItemsSource="{Binding Employees}"
SelectedItem="{Binding SelectedEmployee, Mode=TwoWay}" />

Make sure to mark it two-way so ViewModel is notified when

selection is altered by the UI

❖ Managing selection with MVVM provides a clean way to control and

activate elements without dealing with events

Dealing with Selection

public partial class MainViewModel : BaseViewModel
{

...
private EmployeeViewModel selectedEmp;
public EmployeeViewModel SelectedEmployee {

get { return selectedEmp; }
set { selectedEmp = value; RaisePropertyChanged("SelectedEmployee"); }

}

public MainViewModel() {
SelectedEmployee = Employees.FirstOrDefault();

}
}

Setter called when selection is

changed

❖ Managing selection with MVVM provides a clean way to control and

activate elements without dealing with events

Dealing with Selection

public partial class MainViewModel : BaseViewModel
{

...
private EmployeeViewModel selectedEmp;
public EmployeeViewModel SelectedEmployee {

get { return selectedEmp; }
set { selectedEmp = value; RaisePropertyChanged("SelectedEmployee"); }

}

public MainViewModel() {
SelectedEmployee = Employees.FirstOrDefault();

}
}

When UI supports "selection" vs. activation,

view model can default or change selection

based on runtime decisions, all in a unit-

testable way

❖ Assume a business requirement is to change the color of the employee's

name in the UI if they are a supervisor

Working with visual properties

partial class EmployeeViewModel
{

public Color NameColor { get; }
}

partial class EmployeeViewModel
{

public string NameColor { get; }
}

… this is better but still not ideal –

colors should be determined by the

designer role and view code

Avoid this! Color is a

Xamarin.Forms specific type

What we really want to do here is to have our UI change based on state properties such

as bool or enumerations – we could do this with bindings and value converters

❖ Assume a business requirement is to change the color of the employee's

name in the UI if they are a supervisor

Working with visual properties

partial class EmployeeViewModel
{

public Color NameColor { get; }
}

partial class EmployeeViewModel
{

public string TitleColor { get; }
}

… this is better but still not ideal –

colors should be determined by the

designer role and view code

Avoid this! Color is a

Xamarin.Forms specific type

partial class EmployeeViewModel
{

public bool IsSupervisor {
get { ... }
private set { … }

}
} Let's expose a boolean property

indicating whether the

employee has subordinates …

❖ Data Triggers support dynamic UI property changes based on bindings

with conditional tests

Working with visual properties

<Label Text="{Binding Name}" TextColor="Gray">
<Label.Triggers>

<DataTrigger TargetType="Label"
Binding="{Binding IsSupervisor}"
Value="True">

<Setter Property="TextColor" Value="Blue" />
</DataTrigger>

</Label.Triggers>
</Label>

❖ Data Triggers support dynamic UI property changes based on bindings

with conditional tests

Visual Behavior through properties

<Label Text="{Binding Name}" TextColor="Gray">
<Label.Triggers>

<DataTrigger TargetType="Label"
Binding="{Binding IsSupervisor}"
Value="True">

<Setter Property="TextColor" Value="Blue" />
</DataTrigger>

</Label.Triggers>
</Label>

Assign default value – this is

used when no trigger is

matched

❖ Data Triggers support dynamic UI property changes based on bindings

with conditional tests

Visual Behavior through properties

<Label Text="{Binding Name}" TextColor="Gray">
<Label.Triggers>

<DataTrigger TargetType="Label"
Binding="{Binding IsSupervisor}"
Value="True">

<Setter Property="TextColor" Value="Blue" />
</DataTrigger>

</Label.Triggers>
</Label>

Can have zero or more triggers in

the triggers collection exposed by

the Triggers property

❖ Data Triggers support dynamic UI property changes based on bindings

with conditional tests

Visual Behavior through properties

<Label Text="{Binding Name}" TextColor="Gray">
<Label.Triggers>

<DataTrigger TargetType="Label"
Binding="{Binding IsSupervisor}"
Value="True">

<Setter Property="TextColor" Value="Blue" />
</DataTrigger>

</Label.Triggers>
</Label>

DataTrigger is used to change

visual properties of an Element
based on data binding

❖ Data Triggers support dynamic UI property changes based on bindings

with conditional tests

Visual Behavior through properties

<Label Text="{Binding Name}" TextColor="Gray">
<Label.Triggers>

<DataTrigger TargetType="Label"
Binding="{Binding IsSupervisor}"
Value="True">

<Setter Property="TextColor" Value="Blue" />
</DataTrigger>

</Label.Triggers>
</Label>

Binding property identifies the

ViewModel property the Data

Trigger is watching

❖ Data Triggers support dynamic UI property changes based on bindings

with conditional tests

Visual Behavior through properties

<Label Text="{Binding Name}" TextColor="Gray">
<Label.Triggers>

<DataTrigger TargetType="Label"
Binding="{Binding IsSupervisor}"
Value="True">

<Setter Property="TextColor" Value="Blue" />
</DataTrigger>

</Label.Triggers>
</Label>

… and a comparison test for

that binding; e.g. when

IsSupervisor = true

❖ Data Triggers support dynamic UI property changes based on bindings

with conditional tests

Visual Behavior through properties

<Label Text="{Binding Name}" TextColor="Gray">
<Label.Triggers>

<DataTrigger TargetType="Label"
Binding="{Binding IsSupervisor}"
Value="True">

<Setter Property="TextColor" Value="Blue" />
</DataTrigger>

</Label.Triggers>
</Label>

Has one or more setters to

change properties when the

trigger condition is matched

This is completely dynamic and is driven completely through the binding engine – so if

the property changes at runtime, the trigger is re-evaluated and applied or removed!

❖ Value Converters allow for type

mismatch conversions – e.g. when

the data does not match the UI

requirements

❖ This conversion task is often taken

up by the VM instead – reducing

the need for value converters

❖ Still useful to have more primitive

converters for bindings

Value Converters

BooleanToColorConverter

ArrayToStringConverter

DoubleToIntegerConverter

NotBooleanConverter

IntegerToBooleanConverter

❖ MVVM is not the only design pattern needed, often need to utilize other

patterns to provide necessary features through abstractions

MVVM + other patterns

Dependency

Injection

Factory and

Singleton
Command

Navigation
Alerts +

Prompts
Messages

❖ Screen navigation can be handled in different ways – easiest is just to

have an app-specific service that knows the screens which the VM uses

Managing navigation

public enum AppScreen { Main, Detail, Edit, ... }

public class NavigationManager
{

public Task<bool> GotoScreen(AppScreen screen) {...}
public Task<bool> GoBack() { ... }

}

Enum defines the screens, and the class implements the navigation using

the known app structure – master / detail, NavigationPage, etc.

❖ Another common requirement is

communication between unrelated

app components in a loosely-

coupled fashion

▪ VM to VM

▪ service to VM

❖ This is easily solved with the built-in
MessagingCenter

Loosely-coupled messages

Publisher

MessagingCenter

Subscriber Subscriber

❖ Publisher passes message key and optional parameter

Publishing a message

MessagingCenter.Send<MainViewModel, ItemViewModel>(
this, "Select", selectedItem);

Publisher identifies sending type and parameter

type through generic parameters

❖ Subscribers identify the message by the sender type and message key

and provide a delegate callback to run when message is received

Subscribing to a message

MessagingCenter.Subscribe<MainViewModel, ItemViewModel> (
this, "Select",
(mainVM, selectedItem) => {

// Action to run when "Select" is received
// from MainViewModel

});

Combination of the sender type, string message, and parameter type is the key for

the message recipient – these must match between publisher and subscriber

Driving behavior through properties

Individual Exercise

1. Control and activate events with

selection

2. Utilize properties to define Visual

Behavior

3. Employ Data Triggers

Summary

Use Commands

1. Implement the ICommand

interface

2. Generalize a command

Tasks

❖ UI raises events to notify

code about user activity

▪ Clicked

▪ ItemSelected

▪ …

❖ The downside is that these

events must be handled in

the code behind file

Event Handling

public MainPage()
{

...
Button editButton = ...;
editButton.Clicked += OnClick;

}

void OnClick (object sender, EventArgs e)
{

...
}

Edit

Clicked

❖ Microsoft defined the ICommand interface to provide a commanding

abstraction for their XAML frameworks

Commands

public interface ICommand
{

bool CanExecute(object parameter);
void Execute(object parameter);
event EventHandler CanExecuteChanged;

}

Edit

Command

CanExecute?
Execute(…)

Can provide an optional parameter (often null) for the

command to work with for context

❖ A few Xamarin.Forms controls expose a Command property for the main

action of a control

Commands in Xamarin.Forms

MenuButton ToolbarItem TextCell

❖ A few Xamarin.Forms controls expose a Command property for the main

action of a control

Commands in Xamarin.Forms

<Button Text="Give Bonus"
Command="{Binding GiveBonus}" />

Can data bind a property of type ICommand to the Command property

public ICommand GiveBonus { get; }

❖ Xamarin.Forms also includes a TapGestureRecognizer which can

provide a command interaction for other controls or visuals

Gesture-based commands

<Image Source="IDareYouToTapMe.jpg">
<Image.GestureRecognizers>

<TapGestureRecognizer
Command="{Binding BeBraveCommand}"
CommandParameter="TheyTookTheDare!" />

</Image.GestureRecognizers>
</Image>

CommandParameter property supplies the

command's parameter – in this case as a string

❖ Command should be exposed as a public property from the ViewModel

Implementing commands in the VM

public class EmployeeViewModel : INotifyPropertyChanged
{

public ICommand GiveBonus { get; private set; }
...
public EmployeeViewModel(Employee model) {

this.model = model;
GiveBonus = new GiveBonusCommand(this);

}
...

}
public class GiveBonusCommand : ICommand

❖ ICommand has three required members you must implement

Implementing ICommand

public interface ICommand
{

bool CanExecute(object parameter);
void Execute(object parameter);
event EventHandler CanExecuteChanged;

}

CanExecute is called

to determine whether

the command is valid,

this can enable /

disable the control

which is bound to the

command

❖ ICommand has three required members you must implement

Implementing ICommand

public interface ICommand
{

bool CanExecute(object parameter);
void Execute(object parameter);
event EventHandler CanExecuteChanged;

}

Execute is called to

actually run the logic

associated with the

command when the

control is activated – it

will only be called if

CanExecute returned

true

❖ ICommand has three required members you must implement

Implementing ICommand

public interface ICommand
{

bool CanExecute(object parameter);
void Execute(object parameter);
event EventHandler CanExecuteChanged;

}

CanExecuteChanged
is an event which the

binding will subscribe

to, the ViewModel

should raise this event

when the validity of the

command changes

The binding will then call CanExecute and enable / disable the UI in response

public partial class GiveBonusCommand : ICommand
{

public event EventHandler CanExecuteChanged = delegate {};

MainViewModel viewModel;
public GiveBonusCommand(MainViewModel vm) {

this.viewModel = vm;
}

public bool CanExecute(object parameter) {
return this.viewModel.SelectedEmployee != null

&& (DateTime.Now - this.viewModel.SelectedEmployee.HireDate)
.TotalHours > 8;

}

public void Execute(object parameter) {
this.viewModel.SelectedEmployee.GiveBonus(1000);

}

public void RaiseCanExecuteChanged() {
CanExecuteChanged(this, EventArgs.Empty);

}
}

Command relies heavily

on the data in the

ViewModel … could we

move this logic?

❖ Can use built-in Command and Command<T> to forward command to VM

Implementing commands generically

public class Command<T> : ICommand
{

Action<T> _function;
public void Execute(object parameter) {

_function.Invoke((T) parameter);
}

public bool CanExecute(object parameter) {...}
public event EventHandler CanExecuteChanged;

}

Initialize with

delegates for each

of the required

methods – then

you can define

each command

with logic in the

ViewModel

❖ Command<T> and Command provides mechanism to centralize the logic

for the commands into the VM

Using delegate commands

public class EmployeeViewModel : INotifyPropertyChanged
{

public ICommand GiveBonus { get; private set; }
public EmployeeViewModel(Employee model) {

GiveBonus = new Command(OnGiveBonus, OnCanGiveBonus);
}

void OnGiveBonus() { ... }
bool OnCanGiveBonus() { return ... }

}

❖ Easy to roll your own MVVM support, but there are several really good

MVVM libraries available for cross platform development which include a

lot of additional features

▪ Prism [pnpmvvm.codeplex.com]

▪ MvvmCross [github.com/MvvmCross]

▪ MvvmLight [codeplex.com/MvvmLight]

▪ ReactiveUI [reactiveui.net]

▪ Caliburn.Micro [github.com/Caliburn-Micro]

▪ MvvmHelpers [codeplex.com/MvvmHelpers]

▪ [your favorite goes here] ☺

Existing MVVM Libraries

Flash Quiz

① Commands are not supported on which control?

a) Button

b) Switch

c) MenuItem

d) Trick question - commands are supported on all of them!

Flash Quiz

① Commands are not supported on which control?

a) Button

b) Switch

c) MenuItem

d) Trick question - commands are supported on all of them!

Flash Quiz

② Commands are described through ___________.

a) IDelegateCommand

b) DelegateCommand

c) ICommand

d) Command

Flash Quiz

② Commands are described through ___________.

a) IDelegateCommand

b) DelegateCommand

c) ICommand

d) Command

Flash Quiz

Using commands to run behavior

Group Exercise

1. Implement the ICommand

interface

2. Generalize a command

Summary

Test MVVM based apps

1. UnitTest the ViewModel

Tasks

❖ Unit tests involve testing

small, isolated pieces of our

application independently;

that's very hard to do for

tightly coupled GUI

applications

❖ Testable code is code which

does not have dependencies

on a UI being present

Testing Surface

Model

ViewModel

View
hard

to test

should be

testable

❖ ViewModel can be tested

independently of the UI / platform

❖ Allows for testing of business logic

and visual logic

❖ Can use well-known unit testing

frameworks such as NUnit or MSTest

Testing the ViewModel

Testing the ViewModel

[TestMethod]
void Employee_GiveBonus_Succeeds()
{

var data = new Employee(...);
var vm = new EmployeeViewModel(data);
vm.GiveBonus.Execute("500");

Assert.AreEqual(500,
data.GetNextPaycheckData().Extras);

}

set properties

and invoke

command – just

like UI would

… and then test the results to verify it does what you expect

Adding unit tests for View Models

Demonstration

1. UnitTest the ViewModel

Summary

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

