= Microsoft £ Xamarin University

XAM301

Mobile Application
Arcnitecture

Download materials from university.xamarin.com

Information in this document is subject to change without notice. The example companies,
organizations, products, people, and events depicted herein are fictitious. No association with
any real company, organization, product, person or event is intended or should be inferred.
Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any license agreement from Microsoft or Xamarin, the furnishing of this document
does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2018 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual
Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other
countries.

Other product and company names herein may be the trademarks of their respective owners.

Objectives

1. Apply Model-View-Controller to a
Xamarin.iOS app

2. Apply Model-View-Presenter to a
Xamarin.Android app

3. Apply Model-View-ViewModel to a
Xamarin.Forms app

PO TR

€. Xamarin
¢ University

Separate presentation and domain

To maximize code sharing, separate the presentation and domain layers, this is
referred to as the Separated Presentation Pattern

Ensure that any code that manipulates presentation only
manipulates presentation, pushing all domain and data
source logic into clearly separated areas of the program.

http://martinfowler.com/eaaDev/SeparatedPresentation.html

€. Xamarin
¢ University

Separated presentation patterns

Separated presentation patterns are patterns and rules used to help
developers separate code into logical layers — specifically to separate Ul from

business code

Presentation Domain

€. Xamarin
¢ University

Separated presentation patterns

Separated presentation patterns are patterns and rules used to help
developers separate code into logical layers — specifically to separate Ul from
business code

Domain

€. Xamarin
¢ University

Common separation presentation patterns

Choosing a presentation pattern for your application depends on the APIs for
the development platform and the developer’s personal preference

Model

ViewModel

i
Presenter

Model-View-Controller (MVC) Model-View-Presenter (MVP) Model-View-ViewModel (MVVM)

II

€. Xamarin
¢ University

Why standardize on a style?

There are several key benefits to selecting a well-known architectural style

Improvements Easier for developers Often can share
can be shared to onboard to components
across apps projects between apps

., Xamarin
& University

Use the Single Responsibility Principle

Fvery object should be responsible for a single piece of functionality, and
should only have one reason to change

.6N. Xamarin
¢ University

Benetfits of separating concerns

Separating the presentation code from the domain/logic can help developers
maintain, and scale and test their code

Code Reuse

Apply Model-View-Controller
to a Xamarin.iOS app

Tasks
1. Architect an iOS app using MVC

.

a2
a B
5.

- — T N -
Pt ey 0 50 551 20
i e oy

-
J .\
\ Ny
o e

~
Ry 0
- b

&[5

=
- A

MVC frameworks

Many popular development frameworks are designed to use the Model-View-
Controller pattern to separate business logic from Ul

* »
¥, L
(]
ﬁ\nILS
n

NET MVC

ASPNET MVC Ruby on Rails Xamarin.iOS

€. Xamarin
¢ University

Model-View-Controller (MVC)

MVC was one of the first formalized structural styles for building Ul-based architectures
where the presentation was separated from the logic and data driving it

Controller User actions View

<
<

\ 4 \ 4

data changes

User actions View actions

http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html

€. Xamarin
¢ University

"Probably the widest quoted pattern in Ul development
is Model View Controller (MVC) - it's also the most
misquoted. I've lost count of the times I've seen
something described as MVC which turned out to be
nothing like it."

https://www.martinfowler.com/eaaDev/uiArchs.html

€. Xamarin
¢ University

Model-View-Controller (MVC)

MVC uses three layers to separate data, presentation, and interaction logic

Controller

presentation logic

data presentation / Ul

€. Xamarin
¢ University

MVC types

The Model-View-Controller pattern is typically implemented in one of two
ways depending on the requirements of the domain logic

Active model Passive model

€. Xamarin
¢ University

MVC with an active model

The MVC active model style is where the model changes independently and notifies the
view/controller using the observer pattern

pomemme> observer Srmmmmemeeemy
View Controller

Model-View-Controller
(active model)

€. Xamarin
¢ University

MVC with an active model

The MVC active model style is where the model changes independently and notifies the
view/controller using the observer pattern

Model-View-Controller
(active model)

— T s 2 :
{ change |
notify

_______________ . l O ,
i >< : : d O notify
1 H 1 wn g
i i i o g
: i ; ! < |
Controle e 3 e
get data

€. Xamarin
¢ University

MVC with a passive model

The MVC passive model style is where the model is manipulated only by the controller
and never changes on it's own

e

Model-View-Controller
(passive model)

€. Xamarin
¢ University

MVC with a passive model

The MVC passive model style is where the model is manipulated only by the controller
and never changes on it's own

set data

Y.

update

B

Model-View-Controller

: et data
(passive model) ° i

e Nats

[
>

.6N. Xamarin
¢ University

What is the Model?

The model represents the application data and domain logic

public class Employee public class PayrollManager
{ {
public int Id { get; } public void GiveBonus(
public string Name { get; set; } Employee emp,
public string Title { get; set; } double amount)
public int Supervisor { get; set; } {
public DateTime HireDate { get; set; }
} }

Data (often just simple DTOs) Logic (domain specific)

What is the View?

View presents the information to the user in a platform-specific fashion -
visual elements should be managed here

Lhelles
orld!

Click here

Controls Colors / Themes Fonts

.6N. Xamarin
¢ University

What is the Controller?

Controller defines the application behavior and maps user actions to the
underlying data

Ul aCtIVIty - Update public class Employee
N | q
N tlf ContrO“er ” public int Id { get; }
O y public string Name { get; set; }
public string Title { get; set; }

public int Supervisor { get; set; }
get public DateTime HireDate { get; set; }

A

v
(-

€. Xamarin
¢ University

Visual logic vs. Business Logic

Controllers often end up being the dumping ground for code - a common
nickname is "Massive View Controller" — never forget that the place for all
your domain logic (e.q. business logic) is actually the model

Model

—_

All of these things belong in
data this area because they are
al part of the problem domain
determine what to do ——— eIl [ole] e — You should still apply

separation principles with
persistence classes, namespaces, etc. to
organize this efficiently

—

€. Xamarin
¢ University

MVC in the Apple world

UIKit utilizes MVC to decouple the model and view; each screen has a
required parent View Controller where view interactions are handled

VlewControIIer

user

action not|fy

/updk Model

CXercise

Apply MVC in an iOS application

Pros and Cons of MVC

.€M. Xamarin
¢ University

MVC is a tried and true pattern that supports the separation of concerns —
particularly useful on platforms that encourage it

Pros

Clean separation of roles in app which makes
architecture more clear and allows for multiple
developers to work on codebase

Well known. Lots of frameworks out there which
implement and provide support for the pattern

Model classes and domain is testable and reusable
with different platforms and Ul technologies

Can have multiple views of the same model (think
Excel showing graph of numeric data)

Cons

View and Controller tend to be closely coupled making
independent changes more difficult to coordinate

Increased complexity is not always suitable for smaller
applications

Controller can become a dumping ground of code
because it tends to be the easiest place to put logic

Pattern can be complex to understand and apply

Apply Model-View-Presenter
to a Xamarin.Android app

Tasks

1. Architect an Android application
using MVP

Welcome to the Future

€. Xamarin
¢ University

GUI programming changed completely with the introduction of a real control model that
managed visualization and user interaction

(—— DO & z Qﬁ
File View Special

a[—] e[— =] »[—]

C:QUANTUM \WIN2

SCRIPT.FON THSRE.FON WIN2
SPOOLER.EXE WIN.COM WIN2
TERMINAL .EXE WIN.INI WINOL
“ -
[—)

3

Installation Setup Preferences

Time Date
[12:0&:5& ANl l 1/09/95

Double Click
Slow Fast

Cursor Blink

=N raint - (untitled) KN
4 f{estore g

{ Hove

ALTEY
ALt+F7
ALL+F8
ALt+F9
Alt+F10

Alt+F4

€. Xamarin
¢ University

Model-View-Presenter (MVP)

Model-View-Presenter is a separate presentation pattern where we include a presenter
that works with views that manage their own behavior (e.g. Controls)

View

__ presenter |

€. Xamarin
“ ¢ University

MVP frameworks

Many popular frameworks are designed to use the Model-View-Presenter
pattern to separate business logic from Ul

R
I'I

Windows Forms Xamarin.Forms Xamarin.Android

€. Xamarin
¢ University

MVP — Passive View

In Passive View, the interaction between the view and model is always done through the
presenter; this makes the Ul completely testable through the presenter

! Update
View °< Presenter

> @

control / form / page Notify presentation logic

A

Update

Notify

data

€. Xamarin
¢ University

Example: decoupling the view and presenter

Can use two related interfaces to keep view/presenter contracts synchronized

Email

Password

Forgot Password?

public static class LoginPage

{
public interface IView // implemented by Activity
{
void ClearFields();
void SetEmail(string email);
}
public interface IPresenter
{
void PerformLogin(IView view, string email,
string password);
void ForgotPassword(IView view, string email);
}
}

The key thing here is our presenter is not tied to the Activity!

MVP — Supervising Controller

€. Xamarin
¢ University

In Supervising Controller, the view interacts directly with the model without the presenter

being involved; the presenter updates the model and the model then pushes those

changes directly to the view

. Update
View °< Presenter

> @

control / form / page

A

A

Update

Notify

Notify

presentation logic

Notify

A

Update

> \Vilelol=]

data

€. Xamarin
¢ University

Visual logic vs. Business Logic

Visual logic and behavior is placed in the Presenter, domain logic is placed in
the model layer

Model

data

Presenter

IPresenter.PerformLogin() — business |ogiC

persistence

€. Xamarin
¢ University

Presenter lifetime and persistence

Presenter should have a 1.1 relationship with the view and should move any
necessary view state into the model with an in-memory cache

Model Presenter A (#1) Activity A (#1) (D) Nez\r/ei;::(\j/;ty
Presenter A (#2) Activity A (#2)

F- 3
I'l

CXercise

Apply MVP in an Android application

Pros and Cons of MVP

.€M. Xamarin
¢ University

MVP is a great technique for most modern Ul frameworks that provides
testability and a separation of the view and data driving it

Pros

Can help promote better architecture in frameworks
that do not encourage separation of view and data
(e.g. Android)

Passive view allows for high testability at the
expense of more code in the presenter

Supervising controller promotes code simplicity
over full testability (but is still highly testable)

Cons

Not all decisions are easy to make — should the presenter
be persisted? How does it align with the lifecycle of the

app?
App needs to create and connect presenters to views

Model must provide some sort of change notification if it
changes independent of the presenter

Apply Model-View-ViewModel
to a Xamarin.Forms app

Tasks

1. Architect a Xamarin.Forms app
using MVVM

€. Xamarin
¢ University

Model-View-ViewModel

MVVM is a variation of MVC which uses a data binding infrastructure to connect
controllers (named "view models") to views

ViewModel

presentation logic

Notify \ Binding \

e

S~

data Update presentation / Ul

https://martinfowler.com/eaaDev/PresentationModel.html

€. Xamarin
¢ University

What is the ViewModel?

The ViewModel provides a view-centric representation of the data to display

public class EmployeeViewModel : INotifyPropertyChanged

{ often has a 1.
eXPOSseS : . : : :
blrﬁ)dame private Employee model; < relatlonshlp Wlth

: public string Name { model
propemes and get { return model.Name; }
imp|emen’[5 > set { model.Name = value; OnPropertyChanged("Name"); }
property change)
notification public EmployeeViewModel(Employee model) {
model = model;

}

.6N. Xamarin
¢ University

Customize the ViewModel for the View

The ViewModel enables conversion and coercion of methods or model
properties to allow the view to more easily display data

partial class EmployeeViewModel

{

public string DateHiredText {
get { return model.HireDate.ToString("MMM d, yyyy"); }

}
public EmployeeViewModel Supervisor
{
get
{
return new EmployeeViewModel(Employee.GetById(this.supervisor));
}
}

.6N. Xamarin
¢ University

Bindable Properties in the ViewModel

The ViewModel provides bindable properties to help the View access related
data

partial class EmployeeViewModel

{

public IEnumerable<string> ActiveProjects {
get {
return CompanyProjects.All
.Where(p => p.Owner == model.Id
&& p.IsActive)
.Select(p => p.Name).TolList();

€. Xamarin
¢ University

Visual State and Logic

The ViewModel provides a place to put inconvenient logic for the Ul —for
example perform input validation prior to storing it in the model, or perform
visual calculations or runtime status values for the Ul

partial class DownloaderViewModel {
private int percentComplete;
public int PercentComplete {
get { return percentComplete; }
set {
if (percentComplete != value) {
percentComplete = value;
OnPropertyChanged(nameof(PercentComplete));

}

.6N. Xamarin
¢ University

Connecting a View and ViewModel

A ViewModel object is most often set as the BindingContext for the view—
the view uses bindings to connect to properties exposed by the ViewModel

public partial class MainPage : ContentPage
{
readonly MainViewModel viewModel = new MainViewModel();
public MainPage ()
{
BindingContext = viewModel;
InitializeComponent ();

¥

€. Xamarin
¢ University

ViewModel to View relationships

Apps often have multiple view models —
one for each "data-bindable" entity being
displayed

MainViewModel

. EmployeeViewModel
NoO rules on the mapping between
ViewModels and Views, or between EmployeeViewModel
ViewModels and Models — it's typically 1.
but can be adjusted for app requirements EmployeeViewModel

EmployeeViewModel

~—

MainViewModel might expose collection of
EmployeeViewModel objects to bind to a ListView

What goes in the ViewModel

.6N. Xamarin
¢ University

ViewModel should not expose visual "things" such as colors and fonts; instead
provide data that the view uses to decide these things

partial class EmployeeViewModel
{

public Color NameColor { get; }
}

partial class EmployeeViewModel

{

public bool IsSupervisor { get; }

V4

Always push decisions like what color something is into the View,
can do this with value converters, code behind, or triggers in

XAML

CXercise

Apply MVVM in a Xamarin.Forms application

Become more proficient with MVVM

Xamarin University has a dedicated class for MVVM (XAM320) which provides
more advice on how to handle specific problems in MVVM:

= How to deal with Selection

= How to deal with Actions

= More advice on how to structure ViewModels
= How to Unit Test View Models

Model-View-ViewModel in Xamarin.Forms
Apply the Model-View-ViewModel (MVVM) design pattern to your Xamarin.Forms apps to

XAM320 improve code reuse and testability.

.6N. Xamarin
¢ University

Choosing an architectural style

All three styles are proven and provide good separation of concerns - choice
s often a matter of preference and familiarity with a given pattern

MVC / MVP

Well-known pattern used in many platforms and
frameworks — should lean towards this pattern
when using native Android and iOS Uls

Controller acts as an intermediary between the
View and Model and executes business logic on
behalf of both of them

Controller must include code to keep the Model
and the View synchronized by monitoring both
to watch for changes

MVVM

Introduced originally for WPF and carried over to
all XAML-based frameworks; however becoming
more popular for other Ul platforms

ViewModel represents the "model" for the view
(or the "view" of the model); can also provide
execution logic with the Command pattern

Uses Bindings and the Observer pattern to keep
the View in sync with the Model; can be difficult
to debug bindings

Summary

1. Architect to maximize code sharing
2. Apply Model-View-Controller to a

Xamarin.iOS
3. Apply Mode
Xamarin.Anc
4. Apply Mode

app
-View-Presenter to a
roid app

-View-ViewModel to a

Xamarin.Forms app

PO TR

m Microsoft

© Copyright Microsoft Corporation. All rights reserved.

P4
Thank You!

Please complete the class survey in your profile:
university.xamarin.com/profile

f O @O w

