
Download materials from university.xamarin.com



Information in this document is subject to change without notice. The example companies, 

organizations, products, people, and events depicted herein are fictitious. No association with 

any real company, organization, product, person or event is intended or should be inferred. 

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other 

intellectual property rights covering subject matter in this document. Except as expressly 

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document 

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2018 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual 

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other 

countries.

Other product and company names herein may be the trademarks of their respective owners.





Ensure that any code that manipulates presentation only

manipulates presentation, pushing all domain and data 

source logic into clearly separated areas of the program.

http://martinfowler.com/eaaDev/SeparatedPresentation.html





















http://heim.ifi.uio.no/~trygver/themes/mvc/mvc-index.html



"Probably the widest quoted pattern in UI development 

is Model View Controller (MVC) - it’s also the most 

misquoted. I’ve lost count of the times I’ve seen 

something described as MVC which turned out to be 

nothing like it."

https://www.martinfowler.com/eaaDev/uiArchs.html















public class Employee
{

public int Id { get; }
public string Name { get; set; }
public string Title { get; set; }
public int Supervisor { get; set; }
public DateTime HireDate { get; set; }

}

public class PayrollManager
{

public void GiveBonus(
Employee emp, 
double amount) 

{ 
... 

}





public class Employee
{

public int Id { get; }
public string Name { get; set; }
public string Title { get; set; }
public int Supervisor { get; set; }
public DateTime HireDate { get; set; }

}









Pros Cons

Clean separation of roles in app which makes 

architecture more clear and allows for multiple 

developers to work on codebase

View and Controller tend to be closely coupled making 

independent changes more difficult to coordinate

Well known. Lots of frameworks out there which 

implement and provide support for the pattern

Increased complexity is not always suitable for smaller 

applications

Model classes and domain is testable and reusable 

with different platforms and UI technologies

Controller can become a dumping ground of code 

because it tends to be the easiest place to put logic

Can have multiple views of the same model (think 

Excel showing graph of numeric data)

Pattern can be complex to understand and apply















public static class LoginPage
{

public interface IView // implemented by Activity
{

void ClearFields();
void SetEmail(string email);

}

public interface IPresenter
{

void PerformLogin(IView view, string email, 
string password);

void ForgotPassword(IView view, string email);
}

}

Forgot Password?

The key thing here is our presenter is not tied to the Activity!











Pros Cons

Can help promote better architecture in frameworks 

that do not encourage separation of view and data 

(e.g. Android)

Not all decisions are easy to make – should the presenter 

be persisted? How does it align with the lifecycle of the 

app?

Passive view allows for high testability at the 

expense of more code in the presenter

App needs to create and connect presenters to views

Supervising controller promotes code simplicity 

over full testability (but is still highly testable)

Model must provide some sort of change notification if it 

changes independent of the presenter







https://martinfowler.com/eaaDev/PresentationModel.html



public class EmployeeViewModel : INotifyPropertyChanged
{

private Employee model;

public string Name {
get { return model.Name; }
set { model.Name = value; OnPropertyChanged("Name"); }

}

public EmployeeViewModel(Employee model) {
model = model;

}
...

}

exposes 

bindable 

properties and 

implements 

property change 

notification

often has a 1:1 

relationship with 

model



The ViewModel enables conversion and coercion of methods or model 
properties to allow the view to more easily display data

partial class EmployeeViewModel
{

...
public string DateHiredText {

get { return model.HireDate.ToString("MMM d, yyyy"); }
}

public EmployeeViewModel Supervisor
{

get
{

return new EmployeeViewModel(Employee.GetById(this.supervisor));
}

}
}



partial class EmployeeViewModel
{

...
public IEnumerable<string> ActiveProjects {

get {
return CompanyProjects.All

.Where(p => p.Owner == model.Id
&& p.IsActive)

.Select(p => p.Name).ToList();
}

}
}



partial class DownloaderViewModel {
private int percentComplete;
public int PercentComplete {

get { return percentComplete; }
set {

if (percentComplete != value) {
percentComplete = value;
OnPropertyChanged(nameof(PercentComplete));

}
}

}
}



public partial class MainPage : ContentPage
{

readonly MainViewModel viewModel = new MainViewModel();
public MainPage ()
{

BindingContext = viewModel;
InitializeComponent ();

}
...

}



MainViewModel

EmployeeViewModel

EmployeeViewModel

EmployeeViewModel

EmployeeViewModel

MainViewModel might expose collection of 

EmployeeViewModel objects to bind to a ListView



partial class EmployeeViewModel
{

public Color NameColor { get; }
...

}

partial class EmployeeViewModel
{

public bool IsSupervisor { get; }
...

}







MVC / MVP MVVM

Well-known pattern used in many platforms and 

frameworks – should lean towards this pattern 

when using native Android and iOS UIs

Introduced originally for WPF and carried over to 

all XAML-based frameworks; however becoming 

more popular for other UI platforms

Controller acts as an intermediary between the 

View and Model and executes business logic on 

behalf of both of them

ViewModel represents the "model" for the view 

(or the "view" of the model); can also provide 

execution logic with the Command pattern

Controller must include code to keep the Model 

and the View synchronized by monitoring both 

to watch for changes

Uses Bindings and the Observer pattern to keep 

the View in sync with the Model; can be difficult 

to debug bindings





Please complete the class survey in your profile: 

university.xamarin.com/profile

Thank You!


