
Download class materials from

university.xamarin.com

Using ListView in

Xamarin.Forms

XAM280

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Display a collection with ListView

2. Add and remove items dynamically

3. Customize ListView rows

Objectives

Display a collection with ListView

1. Provide data to a ListView

2. Manage selection in a ListView

Tasks

❖ ListView enables a common navigation style in your Xamarin.Forms

applications – displaying homogenous data in a scrollable, interactive way

Displaying Lists of Data

ListViewListViewUITableView

❖ ListView generates rows at runtime from a collection source assigned to

the ItemsSource property

Providing Data to a ListView

ItemsSource takes data in the

form of an IEnumerable<T> -

arrays, lists, LINQ expressions, etc.

Each object in the IEnumerable data

source becomes a row in the
ListView

❖ ItemsSource must be set to an IEnumerable data source

Setting the ItemsSource property

public static class Cookbook
{

public static IList<Recipe> Recipes
{ set; private set; }

}

ItemsSource can data

bind to a property of a

model that exposes an

IEnumerable or IList

<ListView x:Name="listView" ...
ItemsSource="{x:Static data:Cookbook.Recipes}" ...>

listView.ItemsSource = Cookbook.Recipes;
or

❖ The ListView will then generate a single row in the scrolling list for

each item present in the collection

Creating the rows

by default, it will use ToString on each item that is visible and create a Label to

display the text in the ListView

Meatball Soup

Steak and Crisps

Lobster Tails

PB & J

"inflation"

new string[]

Display a list of items with a ListView

Individual Exercise

❖ Set or retrieve the current selection with the SelectedItem property

Managing Selection

listView.SelectedItem = Cookbook.Recipes.Last();
...

Recipe currentRecipe = (Recipe) listView.SelectedItem;

<ListView ...
SelectedItem="{Binding SelectedRecipe, Mode=TwoWay}">

No need to deal with selection events with this approach, can treat

selection as "activation" and place code into your property setters

❖ Can also use data binding to manage selection

❖ Can separate "activation" from selection using ItemTapped event – this

can be useful for master / detail navigation

Dealing with Activation

<ListView ItemTapped="OnRecipeTapped" ...>

async void OnRecipeTapped(object sender, ItemTappedEventArgs e)
{

Recipe selection = (Recipe) e.Item;
await Navigation.PushAsync(new DetailsPage(selection));

}

Selecting a row

Individual Exercise

1. Provide data to a ListView

2. Manage selection in a ListView

Summary

Add and remove items dynamically

❖ Add, remove and update data in

the ListView

❖ Make UI-safe collection changes

❖ Modify collections in the

background

Tasks

❖ Sometimes, the list of items we want to display is dynamic in nature – we

add and remove elements over time as the application runs

Working with dynamic data

New data available Data removed Data sorted/moved

or changed

❖ There are no explicit APIs for adding and removing ListView items,

instead you modify the collection of data in the ItemsSource property

Adding and Removing ListView items

Cookbook.Recipes.Add(new Recipe { Name = "Mac n Cheese" });

Cookbook.Recipes.RemoveAt(0);

Cookbook.Recipes[0] = new Recipe { Name = "Golden Heaven Food" }

❖ But .. adding, removing or replacing items in the collection at runtime

will not alter the UI unless the collection reports collection change

notifications

Modifying Collections

public static class Cookbook
{

public static List<Recipe> Recipes
{ get; private set; }

}

List<T> doesn't know anything

about Xamarin.Forms…

Cookbook.Recipes.Add(new Recipe { Name = "Lobster Bisque" });

… so this change only happens in the collection .. not the UI!

❖ Microsoft defined the INotifyCollectionChanged interface to

provide this notification – any collections which supply data to a UI

element must implement this interface

INotifyCollectionChanged

namespace System.Collections.Specialized
{

public interface INotifyCollectionChanged
{

event NotifyCollectionChangedEventHandler CollectionChanged;
}

}

❖ Can use ObservableCollection<T> as the underlying collection type

– this implements the necessary collection change notifications

ObservableCollection

public static class Cookbook
{

public static IList<Recipe> Recipes { get; private set;}

static Cookbook() {
Recipes = new ObservableCollection<Recipe>();

}
}

Can expose an interface so implementation can be changed if / when necessary

Working with mutable lists

Individual Exercise

❖ Normally, changes to ObservableCollection<T> must be done on

the UI thread – otherwise you will get an exception at runtime

Modifying collections

void OnProcessRevisions(Recipe[] recipes)
{

Device.BeginInvokeOnMainThread(() => {
foreach (var r in recipes) {

Recipes.Add(r);
}

});
}

Must make sure to

switch to the UI thread

before altering the

collection data

❖ Alternatively, can instruct the binding system to manage that collection

in a thread-safe fashion

Modifying collections in the background

BindingBase.EnableCollectionSynchronization(
Recipes,
null,
(list, context, action, writeAccess) => {

lock (list) {
action();

}
}

);

Pass the instance of

the collection that is

assigned to the

ListView

❖ Alternatively, can instruct the binding system to manage that collection

in a thread-safe fashion

Modifying collections in the background

BindingBase.EnableCollectionSynchronization(
Recipes,
null,
(list, context, action, writeAccess) => {

lock (list) {
action();

}
}

);

Can supply an optional

context parameter which will

be passed to the locking

method each time, or use

null if you don't need it

❖ Alternatively, can instruct the binding system to manage that collection

in a thread-safe fashion

Modifying collections in the background

BindingBase.EnableCollectionSynchronization(
Recipes,
null,
(list, context, action, writeAccess) => {

lock (list) {
action();

}
}

);

Must pass in a delegate that the ListView will use to access the

collection. Method is passed the Collection, Context, an Action to run,

and whether this call will alter the collection (to distinguish read & write)

❖ Alternatively, can instruct the binding system to manage that collection

in a thread-safe fashion

Modifying collections in the background

BindingBase.EnableCollectionSynchronization(
Recipes,
null,
(list, context, action, writeAccess) => {

lock (list) {
action();

}
}

);

Method used to protect

the collection – this can use

whatever locking mechanism

you prefer but must invoke

the passed Action

Flash Quiz

① If you intend to alter the collection providing the data, you should use a

___________ to make sure the UI is notified about the changes

a) List<T>

b) NotifyableCollection<T>

c) ObservableCollection<T>

d) Any collection type will work

Flash Quiz

① If you intend to alter the collection providing the data, you should use a

___________ to make sure the UI is notified about the changes

a) List<T>

b) NotifyableCollection<T>

c) ObservableCollection<T>

d) Any collection type will work

Flash Quiz

② To add a new item to the ListView you can _________.

a) ListView.Items.Add(…)

b) ListView.ItemsSource.Add(…);

c) ListView.Add(…);

d) None of the above

Flash Quiz

② To add a new item to the ListView you can _________.

a) ListView.Items.Add(…)

b) ListView.ItemsSource.Add(…);

c) ListView.Add(…);

d) None of the above

Flash Quiz

❖ A very popular gesture used with ListViews

that display external data is "pull-to-refresh" to

get new data from the external source

❖ Refresh is activated by "pulling down" on the

ListView – indicator is shown while the data is

being updated

Pull to refresh

❖ Must turn on support through IsPullToRefreshEnabled

Implementing Pull to refresh

<ListView ... IsPullToRefreshEnabled="True">

can be data bound or changed at runtime if

you want to turn support on and off

❖ Control raises Refreshing event when refresh gesture is detected

Implementing Pull to refresh

<ListView ... IsPullToRefreshEnabled="True"
Refreshing="OnRefreshing" >

void OnRefreshing(object sender, EventArgs e)
{

... // Code to do the refresh goes here ..

... // This is called on the UI thread!
}

❖ Must set IsRefreshing to false when refresh is complete

Implementing Pull to refresh

void OnRefreshing(object sender, EventArgs e)
{

... // Code to do the refresh goes here ..
((ListView)sender).IsRefreshing = false;

}

❖ Can also use RefreshCommand property to implement refresh logic as

a MVVM-compatible command

Implementing Pull to refresh [MVVM]

<ListView ... IsPullToRefreshEnabled="True"
IsRefreshing="{Binding IsRefreshing, Mode=TwoWay}" >
RefreshCommand="{Binding RefreshCommand}" >

public class TheViewModel : INotifyPropertyChanged
{

public ICommand RefreshCommand { get; private set; }
public bool IsRefreshing ...

❖ Can manually start and stop a refresh using the BeginRefresh and

EndRefresh methods; this is useful if you have some other way to

perform a refresh but want the same built-in experience

Manually starting a Refresh

ListView lv;
void OnServerUpdatedData(object sender, EventArgs e)
{

lv.BeginRefresh();
... // Update data
lv.EndRefresh();

}

Add Pull to Refresh support

Group Exercise

❖ Add, remove and update data in

the ListView

❖ Make UI-safe collection changes

❖ Modify collections in the

background

Summary

Customize ListView rows

1. Alter the row visuals

2. Use Data Templates

3. Change the ListView

separator

4. Use built-in cell templates

Tasks

Displaying ListView Items

❖ Default behavior for ListView is to use

ToString() method and display a single

string for each row

❖ Acceptable for basic data, but has little to

no visual customization of colors, position,

or even data displayed

❖ A second problem with using

the default visualization is that it

is considered read-only

❖ If the data inside the object is

changed at runtime, the

ListView will not see the

change – even if a property

change notification is raised!

Mutating data

Try changing the

data for a record

and then going

back … see what

happens ..

❖ Can customize the row by setting ItemTemplate property

Altering the row visuals

ItemTemplate describes visual

representation for each row

❖ DataTemplate provides visual "instructions" for each row

Setting an ItemTemplate [XAML]

ListView uses the DataTemplate definition

to create the runtime visualization, once per

row in the ItemsSource

<ListView ...>
<ListView.ItemTemplate>

<DataTemplate>
…

</DataTemplate>
</ListView.ItemTemplate>

</ListView>

listView.ItemTemplate =
new DataTemplate(...);

❖ DataTemplate must describe a Cell, several

built-in variations available

Data Template

TextCell Text + Details

EntryCell Editable Text + Label

SwitchCell Switch + Label

ImageCell Image + Text + Details

❖ Cell provides "template" for each row, bindings used to fill in the details

Providing Data

<ListView.ItemTemplate>
<DataTemplate>

<TextCell Text="{Binding Name}"
DetailColor="Gray" Detail="{Binding PrepTime}" />

</DataTemplate>
</ListView.ItemTemplate>

BindingContext for the generated row will be

a single item from the ItemsSource

❖ Can create and assign a DataTemplate in C# for more dynamic

content or if you prefer to not use XAML

Setting an ItemTemplate [C#]

var dt = new DataTemplate(typeof(TextCell));
dt.SetBinding(TextCell.TextProperty, "Name");
dt.SetBinding(TextCell.DetailProperty, "PrepTime");
dt.SetValue(TextCell.DetailColorProperty, Color.Gray);

contactList.ItemTemplate = dt;

Use SetBinding for data-bound values that come from the

BindingContext and SetValue for static values to set in the template

❖ Can use derived

class to keep

bindings with

definition

Defining custom cells

public class CustomTextCell : TextCell
{

public CustomTextCell() {
this.SetBinding(TextCell.TextProperty,

new Binding("Name"));
this.SetBinding(TextCell.DetailProperty,

new Binding("PrepTime"));
}

}

listView.ItemTemplate =
new DataTemplate(typeof(CustomTextCell));

Bindings can be set

in the constructor

with this approach

❖ DataTemplate can also use a callback function – this can be used to

dynamically select a specific template based on runtime characteristics

Setting an ItemTemplate [C#]

listView.ItemTemplate = new DataTemplate(
() => new TextCell()) {
Bindings = {

{ TextCell.TextProperty, new Binding("Name") },
{ TextCell.DetailProperty, new Binding("Email") },

}
};

Can set a Bindings dictionary property to establish the required bindings

Flash Quiz

① Data Templates can be defined in code or XAML

a) True

b) False

Flash Quiz

① Data Templates can be defined in code or XAML

a) True

b) False

Flash Quiz

② For ListView, the Data Template must define a _______ type

a) View

b) Visual

c) Cell

d) ViewCell

Flash Quiz

② For ListView, the Data Template must define a _______ type

a) View

b) Visual

c) Cell

d) ViewCell

Flash Quiz

③ Which is not a built-in Cell type?

a) TextCell

b) ImageCell

c) SliderCell

d) All of these are available

Flash Quiz

③ Which is not a built-in Cell type?

a) TextCell

b) ImageCell

c) SliderCell

d) All of these are available

Flash Quiz

Using the built-in ImageCell

Individual Exercise

❖ Xamarin.Forms supports the ability to change the line that separates

each displayed entry through two properties:

Changing the separator

<ListView ... SeparatorVisibility="None">

Can be None or Default, currently

there is no option for Always as not

all platforms have separators as part

of their UX

❖ Xamarin.Forms supports the ability to change the line that separates

each displayed entry through two properties:

Changing the separator

<ListView ... SeparatorColor="#90C0C0C0">

<ListView ... SeparatorVisibility="None">

Can supply an Argb value to set the

color, or one of the known colors –

including Color.Default

❖ Rows can have actions associated with

them which are displayed through "swipe

to the left" gesture (iOS) or a long-click

gesture (other platforms)

❖ Allows for one or more "actions" to be

displayed and invoked inline with the row

❖ Applied through a ContextAction
property array on the Cell definition

Context actions

❖ Each item in the ContextActions collection is a MenuItem – can set

Text and provide an event handler to process the action

Adding Context Actions

<TextCell ...>
<TextCell.ContextActions>

<MenuItem Clicked="OnMarkAsRead" Text="MarkAsRead" />
<MenuItem Clicked="OnDelete" Text="Delete"

IsDestructive="true" />
</TextCell.ContextActions>

</TextCell>

Button is rendered with platform "danger"

background, on iOS this results in a red button

❖ Can grab BindingContext from MenuItem sender to determine the

data item being interacted with in the event handler

Getting the data out of the handler

void OnDelete(object sender, EventArgs e)
{

MenuItem item = (MenuItem)sender;
Recipe recipe = (Recipe)item.BindingContext;
Cookbook.Recipes.Remove(recipe);

}

Never forget that the BindingContext is the underlying model data for the row

– this is almost always what you want to work with

❖ MenuItem also has Command and CommandParameter properties useful

for MVVM style implementations

Commanding support in MenuItem

<TextCell ...>
<TextCell.ContextActions>

...
<MenuItem Text="Delete" IsDestructive="True"

Command="{Binding DeleteCommand}"
CommandParameter="{Binding .}" />

</TextCell.ContextActions>
</TextCell>

Can bind CommandParameter to BindingContext to get access

to the specific element this action is being invoked on

Add a context action to each row

Homework Exercise

1. Alter the row visuals

2. Use Data Templates

3. Change the ListView

separator

4. Use built-in cell templates

Summary

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

