
Download class materials from

university.xamarin.com

Patterns for Cross

Platform Mobile

Development

XAM250

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2018 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Locate dependencies using the

Factory Pattern

2. Use a Service Locator to register

and retrieve dependencies

3. Use an IoC container to

automatically inject dependencies

Objectives

Locate dependencies using the

Factory Pattern

1. Define a Factory

2. Assign a dependency to a Factory

3. Access the Factory from shared

code

Tasks

❖ Common problem to require APIs

which are platform-specific

▪ alerts / notifications

▪ file I/O

▪ UI marshaling

▪ …

❖ Use Bridge Pattern to decouple

implementation; this also enables

testing

Using Platform Features

Logger

+ Log(string)

IRecorder

+ Write(string)

AndroidLogRecorder

CloudRecorder DbRecorder

❖ For example – every platform

has a unique way to notify the

user that something has

occurred

❖ Shared code will use the

IAlertService abstraction

❖ Platform(s) must each

implement abstraction using

their own unique API

Example: Alert Service

public interface IAlertService
{

bool Show(string title,
string message,
string yesButton,
string noButton);

}

❖ Once we have abstractions and implementations we need to tie them

together

Using Services from our Shared Code

public class TerminatorViewModel
{

...
public void TerminateJohnConner()
{

IAlertService alert = ??;
if (!alert.Show("John Conner Located!",

"Initiate termination sequence?",
"Yes", "No")) { ... }

}
}

Need to provide the

IAlertService to

the class or method

❖ Several well-known patterns can be used to

break dependencies and loosely-couple

components together

▪ referred to as “Inversion of Control” (IoC)

▪ allow reusable components to call into

platform-specific code (vs. the other way

around)

Locating Services – Inversion of Control

Service
Locator

Factory
Pattern

Dependency
Injection

❖ Dependencies can be located through factories which are responsible

for creating the abstractions

Factory Pattern

Client Factory Service
uses creates

Defining a Factory

public abstract class AlertService
{

public static Func<AlertService> Create { get; set; }

public abstract bool Show(string title,
string message,
string yesButton,
string noButton);

}

Delegate is set

by platform

which returns

implementation

of the defined
AlertService

Note: this is just one way to build a Factory, as with any pattern, the

implementation can be tailored to the language and platform capabilities

Setting up a Factory

class AlertServiceiOS : AlertService
{

public bool Show(string title, string message,
string yesButton, string noButton) { ... }

}

public override bool FinishedLaunching(...) {
...
AlertService.Create = () => new AlertServiceiOS();

}

❖ Each platform would implement the abstraction and then set the factory

property to a delegate that returns the implementation

iOS

Using a Factory

public void OnReceivedError(string errorMessage)
{

var alertService = AlertService.Create();
alertService.Show ("Error",

$"Got error: {errorMessage}", "OK", null);
...

}

❖ Then any code in the project that needed that feature would go to the

known factory to create the object to be used

Now the client doesn't need to know or care about the implementation – it goes to

the factory to get one and just uses it from anywhere in the app

Use the Factory Pattern to access a dependency from shared code

Individual Exercise

Factory Pros and Cons

Pros Cons

▪ Hides the implementation ▪ Requires separate “factory” for each

abstraction (possible maintenance issue)

▪ Easy to use and understand ▪ Client must take dependency against

factory

▪ Can decide implementation at

runtime and return specific version

based on environment

▪ Missing dependencies are not known until

runtime

Use a Service Locator to register and

retrieve dependencies

1. Define a Service Locator

2. Register dependencies with a

Service Locator

3. Resolve dependencies from a

Service Locator

Tasks

❖ Service Locator pattern uses a container that maps abstractions

(interfaces) to concrete, registered types – client then uses locator to

find dependencies

Service Locator

Client Locator

Service A

Service B

uses

locates

locates

Service Locator Example Definition

public sealed class ServiceLocator
{

public static ServiceLocator Instance { get; set; }

public void Add(Type contractType, object value);
public void Add(Type contractType, Type serviceType);
public object Resolve(Type contractType);
public T Resolve<T>();

}

Uses Singleton

pattern to

provide global

accessibility

Provide capability to register and locate types

Registering Dependencies

public partial class AppDelegate
{

...
public override void FinishedLaunching(UIApplication application)
{

...
ServiceLocator.Instance.Add<IAlertService,MyAlertService>();

}
}

Platform-specific code registers implementation for the abstraction

Using the Service Locator

public void DialNumber(string number)
{

var alert = ServiceLocator.Instance.Resolve<IAlertService>();
if (!alert.Show("Dial Number",

"Are you sure you want to dial " + number,
"Yes", "No")) { ... }

}

Client then requests the abstraction and locator returns the registered implementation

❖ Easy to create your own service locator, but there are many usable 3rd-

party implementations including:

▪ Common Service Locator

[commonservicelocator.codeplex.com]

▪ Most Mvvm/Pattern libraries have a Service Locator

▪ Xamarin.Forms DependencyService

Service Locator implementations

Service Locator Pros and Cons

Pros Cons

▪ Easy to use and understand

▪ Clients can JIT-request services

▪ Can be used with any client

▪ Clients must all have access to Locator

▪ Harder to identify dependencies in code

▪ Missing dependencies harder to detect

Build a Service Locator

Group Exercise

Use an IoC container to

automatically inject dependencies

1. Register dependencies with an IoC

container

2. Inject dependencies

3. Automate dependence injection

Tasks

❖ Another option is to have the platform-specific code "inject" the

dependency by passing it as a parameter or setting a property

Dependency Injection

public class DataAccessLayer
{

public DataAccessLayer(
IDbRepository db,
IAlertService alerts) { ... }

public ILogger Logger { get; set; }
...

}

Services this class

depends on must be

supplied ("injected")

through constructor

parameters, properties

or method parameters

Using Dependency Injection

public DataAccessLayer CreateDataLayer()
{

var dataAccessLayer = new DataAccessLayer(
new SqliteRepository(), // IDbRepository
new WinRTAlertService()); // IAlertService

dataAccessLayer.Logger = new AzureLogger(); // ILogger

return dataAccessLayer
}

❖ Can then connect the client and required dependencies together

manually in our code

❖ An IoC container is a dependency manager used to create and control

the lifetime of dependencies in your application; it has two purposes:

Inversion of Control (IoC) container

Registry of known

dependencies

Creates objects and

"injects" required

dependencies

❖ Can automate DI with a container that dependencies are registered with

which then create types – automatically supplying the dependencies

DI with an IoC Container

IoC

Container

IDbRepository

uses / requires

DataAccess

Layer

creates1

injects

dependency
3

SqliteRepo

implements

creates

dependency
2

Create<DataAccesslayer>()

DI Container Example

MyContainer container = new MyContainer();
container.Register<IDbRepository,SqliteRepository>();
container.Register<IAlertService,WinRTAlertService>();
container.Register<ILogger>(new AzureLogger(AzureToken));
container.Register< MessageBus>(new MessageBus(this));

Dependencies are typically registered in platform-specific code

(but don't have to be!)

var dataLayer = container.Create<DataAccessLayer>();
...

Can then ask container to create the DataAccessLayer from anywhere in our

code – it will automatically supply the required dependencies

DI + Containers Pros and Cons

Pros Cons

▪ Client only needs real dependencies,

no container reference necessary

▪ Involves a bit of magic (!), the big

picture can be harder to understand

(what depends on what)

▪ Easier to identify dependencies being

used since they are often passed to

constructors or filled in properties

▪ Often requires some form of reflection;

not generally a performance issue but

could be

❖ Many popular 3rd-party IoC containers available:

▪ TinyIoC

▪ Ninject

▪ AutoFac

▪ Unity

▪ MvvmCross

▪ …

DI / IoC Containers

Use Dependency Injection

Individual Exercise

Flash Quiz

① Key to all these patterns is _________.

a) Custom attributes

b) Containers

c) Singletons

d) Abstractions

Flash Quiz

① Key to all these patterns is _________.

a) Custom attributes

b) Containers

c) Singletons

d) Abstractions

Flash Quiz

② Service Locator is where ___________.

a) Services are found and set into properties on the client

b) Client request specific abstraction through a shared locator

c) Client creates service directly

d) You use Accio summoning charm to create the service

Flash Quiz

② Service Locator is where ___________.

a) Services are found and set into properties on the client

b) Client request specific abstraction through a shared locator

c) Client creates service directly

d) You use Accio summoning charm to create the service

Flash Quiz

③ To inject dependencies the IoC container will often need to create the

dependencies as well as the type that uses those dependencies

a) True

b) False

Flash Quiz

③ To inject dependencies the IoC container will often need to create the

dependencies as well as the type that uses those dependencies

a) True

b) False

Flash Quiz

④ The best technique to manage dependencies is ________.

a) Factory Pattern

b) Service Locator Pattern

c) Dependency Injection

d) Depends on the project, team, and personal preference.

Flash Quiz

④ The best technique to manage dependencies is ________.

a) Factory Pattern

b) Service Locator Pattern

c) Dependency Injection

d) It depends on the project, team, and personal preference.

Flash Quiz

1. Register dependencies with an IoC

container

2. Inject dependencies

3. Automate dependence injection

Summary

Composition IV, 1911 Kandinsky[1]

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

