
Download class materials from

university.xamarin.com

Consuming REST-based

Web Services

XAM150

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Obtain the device’s network

capabilities

2. Introduce REST

3. Consume REST services with

Xamarin

4. Integrate with platform-specific

network features

Objectives

Obtain the device’s network

capabilities

❖ Determine if the device has a

connection

❖ Obtain the device’s connection type

❖ Determine when network availability

changes

Tasks

❖ More often than not, mobile apps

need to access and use external

data - most commonly as REST or

SOAP based web services

❖ Xamarin.Forms apps have full

support for both styles and the

code you build to interact with your

services can often be shared

Web Services

❖ Cellular network isn't always the

most reliable transfer mediums and

can cause your app to fail

❖ Slow transfer speeds can add

latency and performance issues in

your app

❖ Unexpected roaming and data

usage charges can make users

unhappy

Preparing for challenges

❖ Mobile applications that utilize network data are interested in several key

pieces of information which are obtained using platform-specific APIs

Working with Mobile Networks

Connection

Type
WiFi, Cellular,

Ethernet, etc.

❖ Mobile applications that utilize network data are interested in several key

pieces of information which are obtained using platform-specific APIs

Working with Mobile Networks

Connection

Type

Connection

Status

Disconnected,

Available,

Connecting,

Connected, etc.

❖ Mobile applications that utilize network data are interested in several key

pieces of information which are obtained using platform-specific APIs

Working with Mobile Networks

Connection

Type

Connection

Status

Connection

Cost

Metered cost for

the connection

❖ Applications should always determine whether

a network is available before starting a

network operation

First things first: is there a network?

When no network is available, the

application can provide a helpful

prompt to request user intervention

❖ Connection status can change at any time; the application is responsible

for monitoring connection status and responding in a user-friendly

fashion

Connection status

Monitorhttp://www.cnn.com

❖ Mobile devices can access networks using three different network styles,

each has different pricing, performance and reliability

Connection types

Wi-FiCellular

(CDN)

Roaming

Cellular

Note: Devices can also be configured to not allow certain connection types which will

generally be reported as no network available to the application

❖ Depending on the connection type the device is using, the bandwidth

and cost will vary greatly

Connection type comparisons

Network Type Typical download speed 4MB download

2G (EDGE) 125kbps ~2m 16s

3G 800kbps ~40s

4G (LTE) 1.5mbps ~21s

WiFi 5-40mbps ~1 - 7s

It's important to know what network type the device is on because the app can change

the user experience in response, e.g. "This is taking longer than expected…"

❖ Android and Windows allow you to

detect higher-cost networks, for

example when roaming or the

connection is metered

❖ Allows applications to prompt the

user for permission before

performing larger data transfers

High cost networks

Android Windows Mobile

Users can tell when they are

roaming through status bar icons,

or through the displayed carrier

name on iPhone

❖ Each platform has unique APIs to detect, monitor and work with the

networking hardware

Platform-specific APIs

using Android.Net;
...
ConnectivityManager connectivityManager =

(ConnectivityManager) Application.Context
.GetSystemService(Context.ConnectivityService);

bool isConnected = connectivityManager.ActiveNetworkInfo != null
&& connectivityManager.ActiveNetworkInfo.IsConnected;

For Android, use the

ActiveNetworkInfo property

❖ Open source Connectivity Plugin includes PCL support with

implementations for UWP, Mac, iOS and Android

Cross Platform network detection

github.com/jamesmontemagno/Xamarin.Plugins

❖ Connectivity plug-in exposes CrossConnectivity.Current instance

to access connection, bandwidth and connection change notifications

Using the connectivity plug-in

bool isConnected = CrossConnectivity.Current.IsConnected;
...
CrossConnectivity.Current.ConnectivityChanged += (sender,e) =>
{

bool stillConnected = e.IsConnected;
...

};

❖ Common to use activity indicator, or indeterminate progress ring to

report network activity; can use platform-specific approach, or

Xamarin.Forms has page-level property

Reporting network activity

this.IsBusy = true; // On Page instance method

try {
// Network code goes here

}
finally {

this.IsBusy = false;
}

Flash Quiz

① Monitoring network connections requires platform-specific APIs be used

(True or False)?

a) True

b) False

Flash Quiz

① Monitoring network connections requires platform-specific APIs be used

(True or False)?

a) True

b) False

Flash Quiz

② To determine if an iOS device is roaming, you need to:

a) Check the IsRoaming property on the ConnectivityManager

b) Subscribe to the ReachabilityChanged event

c) You cannot detect roaming conditions on iOS

Flash Quiz

② To determine if an iOS device is roaming, you need to:

a) Check the IsRoaming property on the ConnectivityManager

b) Subscribe to the ReachabilityChanged event

c) You cannot detect roaming conditions on iOS

Flash Quiz

③ You can obtain network information about an Android device using the

method call:

a) Android.GetNetworkInformation

b) ConnectivityManager.ActiveNetworkInfo

c) Context.Connection

Flash Quiz

③ You can obtain network information about an Android device using the

method call:

a) Android.GetNetworkInformation

b) ConnectivityManager.ActiveNetworkInfo

c) Context.Connection

Flash Quiz

Determine the network connectivity

Individual Exercise

❖ Determine if the device has a

connection

❖ Obtain the device’s connection type

❖ Determine when network availability

changes

Summary

Introduce REST

❖ Identify REST services

❖ Utilize URLs in REST

❖ Describe guidelines for using REST

Tasks

{ }REST API{ }REST API

❖ REST (Representational State

Transfer) is an architecture for

creating distributed applications

which is modeled around the HTTP

specification

What are REST services?

❖ REST is designed to take advantage of the architecture of the WWW

▪ Operations are implemented as HTTP verbs

▪ URLs represent accessible resources

Why use REST?

REST has become the

dominant architecture for

web services, primarily

due to it being highly

accessible from JavaScript

Why use REST?

73%

18%

6% 3%

REST

SOAP

JavaScript

XML-RPC

REST

❖ CRUD operations are modeled after HTTP verbs

REST operations

GET
used to retrieve

resources and can

be cached by

intermediaries

❖ CRUD operations are modeled after HTTP verbs

REST operations

GET POST used to create

resources when the

service decides the

location

❖ CRUD operations are modeled after HTTP verbs

REST operations

GET POST PUT used to update (or

create) resources

when the client

passes the id

❖ CRUD operations are modeled after HTTP verbs

REST operations

GET POST PUT DELETE

used to delete an

identified resource

There are other verbs defined by the HTTP specification which can be used as well, but

they are far less common – check the specification for more information

❖ URLs are used to identify and organize accessible resources

URLs + Operations

GET https://www.some_address.com/customers/12345

GET https://www.some_address.com/customers?id=12345

or

REST is very flexible with regards to the URL structure, the main takeaway is that

the URL is predictable and unique for the resource being accessed

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: ####
...

❖ URLs are used to identify and organize accessible resources

URLs + Operations

HTTP status codes are useful in REST, for

example 404 Not Found would be the

response if the record does not exist

GET https://www.some_address.com/customers/12345

GET https://www.some_address.com/customers?id=12345

or

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: ####
...

❖ URLs are used to identify and organize accessible resources

URLs + Operations

Content-Type indicates the format of

the response body, typically this is XML

or JSON, but can also be an image, plain

text, or any other valid HTTP format

GET https://www.some_address.com/customers/12345

GET https://www.some_address.com/customers?id=12345

or

HTTP/1.1 200 OK
...
<customer>

<id>12345</id>
<name>Joe</name>
...

</customer>

❖ URLs are used to identify and organize accessible resources

URLs + Operations

or

Response body contains the

requested data

GET https://www.some_address.com/customers/12345

GET https://www.some_address.com/customers?id=12345

or

❖ Safe HTTP methods do not modify

the resource representation

❖ Middleware client proxy servers,

networks stacks, and ISPs can cache

the response for performance

(particularly on cellular networks)

❖ This provides high scalability for safe

operations

Safe HTTP methods

HTTP Method Safe

OPTIONS yes

GET yes

HEAD yes

PUT no

POST no

DELETE no

PATCH no

❖ Idempotent HTTP methods can be

called multiple times with the same

data and it will always produce the

same result on the server (e.g. no

side effects)

❖ This means the operation is

guaranteed to happen only once

even if we send multiple requests

Idempotent HTTP methods

HTTP Method Idempotent

OPTIONS yes

GET yes

HEAD yes

PUT yes

POST no

DELETE yes

PATCH no

❖ Favor JSON if you have a choice

(many services will return the data

in a variety of formats)

❖ Pay attention to status codes and

reissue requests to idempotent and

safe operations when outcome is

uncertain (timeout, etc.)

❖ JSON/XML + HTTP doesn't mean

the service is really RESTful

RESTful guidelines

❖ Security is ultimately decided by the

service – the client can only

conform to what the service allows

❖ Should always prefer https to

protect the data peer-to-peer

❖ Most services use OAuth2 for

authorization and authentication

Security in REST

Flash Quiz

① What HTTP verb should be used to update an existing record?

a) GET

b) POST

c) PUT

d) UPDATE

Flash Quiz

① What HTTP verb should be used to update an existing record?

a) GET

b) POST

c) PUT

d) UPDATE

Flash Quiz

② One advantage of REST is that many operations are cacheable

a) True

b) False

Flash Quiz

② One advantage of REST is that many operations are cacheable

a) True

b) False

Flash Quiz

③ Which of these choices would potentially be valid to retrieve a resource

with an id of "1" and a type of "fruit"?

a) GET www.store.com/api/food/1

b) GET www.store.com/api/food/fruit?id=1

c) GET www.store.com/api/food/fruit

d) POST www.store.com/api/food

e) All of the above are possible

Flash Quiz

③ Which of these choices would potentially be valid to retrieve a resource

with an id of "1" and a type of "fruit"?

a) GET www.store.com/api/food/1

b) GET www.store.com/api/food/fruit?id=1

c) GET www.store.com/api/food/fruit

d) POST www.store.com/api/food

e) All of the above are possible

Flash Quiz

Keep in mind that while these are possible URLs to access the given resource, the actual

allowed URL(s) are determined by the service

❖ Identify what REST services are

❖ Utilize URLs in REST

❖ Describe guidelines for using REST

Summary

{ }REST API

Consuming REST services with

Xamarin

❖ Connect to a REST service

❖ Serialize data

❖ Send and receive data from a REST

service

Tasks

❖ Xamarin applications have several API options when working with REST-

based services

Working with REST services

HttpClient Most common

approach, built into

.NET

ServiceStack

❖ Xamarin applications have several API options when working with REST-

based services

Working with REST services

HttpClient
Full fledged 3rd party web

services framework, has

client PCL for consuming

REST services

ServiceStack

❖ Xamarin applications have several API options when working with REST-

based services

Working with REST services

HttpClient RestSharp

Full 3rd party client library that

supports file downloads,

authentication, chunking, etc.

RestSharpServiceStack

❖ Xamarin applications have several API options when working with REST-

based services

Working with REST services

HttpClient
Platform

Specific

❖ Mobile apps can use System.Net.Http.HttpClient class to send

basic requests and receive responses over HTTP

Introducing HttpClient

REST Service

(Web Server)

GET

POST

PUT

DELETE

H
t
t
p
C
l
i
e
n
t
App

❖ HttpClient is available

in .NET, Android and iOS

projects

❖ Not accessible in PCLs

unless you add a NuGet

package

HttpClient in PCLs

❖ HttpClient uses Tasks and asynchronous APIs to keep I/O operations

from affecting the UI thread

HttpClient async APIs

public async Task<string> GetData()
{

HttpClient client = new HttpClient();

return await client.GetStringAsync(
"https://itunes.apple.com/search?term=comics");

}

Can use async / await keywords to easily work with APIs

GetStringAsync

How do I retrieve data with HttpClient?

❖ HttpClient supports several Get method styles to retrieve data

returns response body as

a string – this is the

simplest form to use

GetStringAsync GetStreamAsync

How do I retrieve data with HttpClient?

❖ HttpClient supports several Get method styles to retrieve data

returns response body as a

Stream, useful for large data

packets where you can perform

partial processing

GetStreamAsync

How do I retrieve data with HttpClient?

❖ HttpClient supports several Get method styles to retrieve data

GetByteArrayAsync

GetStringAsync

returns response body as

a byte array, useful for

binary responses

How do I retrieve data with HttpClient?

❖ HttpClient supports several Get method styles to retrieve data

GetAsync

GetStreamAsync

GetByteArrayAsync

GetStringAsync
returns full

HttpResponseMessage
which includes headers +

body + status

❖ GetAsync returns a full response

message which contains information

about the state of the request, the

data result and error information

❖ Check IsSuccessStatusCode
property to determine result and

then either access Content or

StatusCode

HttpResponseMessage

❖ The actual data from the web

service request is returned in the

Content property in the form of an

HttpContent class, this can also be

used when sending data

❖ Can use ReadAs methods to pull

data out in the form of a string,

byte array or Stream

HttpContent

❖ .NET objects must be turned into bytes in order to be sent or received

from a network peer, this process is called serialization

❖ Serialization happens anytime we are communicating over a network,

regardless of the technology being used to transfer information

Data Serialization

❖ REST services typically transfer data in either JSON or XML

Serialization Options

JSON or XML

JSON has become the de-facto standard for RESTful services: most services either

default to, or will respect the Accept header type and return JSON when requested

❖ JavaScript Object Notation is a very

popular serialization format using

name/value text pairs

✓ Compact + easy to parse = fast

✓ Flexible data representation

✓ Widely supported, popular with

client-side scripting

JSON
{ "contacts": [
{
"name": "Alice",
"email": "alice@contoso.com"

},
{
"name": "Bob",
"email": "bob@contoso.com"

},
{
"name": "Nigel",
"email": "nigel@contoso.com"

},
]
}

❖ Most services either look at the Accept header, or take a URL

parameter which indicates that JSON should be returned

Requesting JSON with HttpClient

HttpClient client = new HttpClient();
client.DefaultRequestHeaders.Accept.Add(

new MediaTypeWithQualityHeaderValue(
"application/json"));

...

Can request that service respond with JSON data

❖ Applications typically choose a JSON library to work with, there are two

very popular implementations commonly used

Parse and format data with JSON

System.Json

part of .NET 4.5, supports

iOS + Android, but not

PCLs

❖ Applications typically choose a JSON library to work with, there are two

very popular implementations commonly used

Parse and format data with JSON

System.Json Json.NET

popular open-source

implementation which

supports PCLs (preferred)

❖ Json.NET is a 3rd party library available through Nuget, should add it to

your platform-specific projects and your shared project(s)

Adding support for Json.NET

❖ JSON takes the network data and turns it into an object graph, but you

must know the shape of the data and define the object to map it to

Building objects with JSON

{ "contacts": [
{
"name": "Alice",
"email": "alice@contoso.com"

},
{
"name": "Bob",
"email": "bob@contoso.com"

},
{
"name": "Nigel",
"email": "nigel@contoso.com"

},
]
}

The JSON data shown here is an

array of contact elements

The JSON data shown here is an

array of contact elements, each

with a name and email

To serialize or de-serialize this, we must

define a set of objects which can be

mapped to this data

❖ JSON takes the network data and turns it into an object graph, but you

must know the shape of the data and define the object to map it to

Building objects with JSON

public class Contact
{

public string Name { get; set; }
public string Email { get; set; }

}

{ "contacts": [
{
"name": "Alice",
"email": "alice@contoso.com"

},
{
"name": "Bob",
"email": "bob@contoso.com"

},
{
"name": "Nigel",
"email": "nigel@contoso.com"

},
]
}

Json.NET will map public

properties by name + type, best

to keep it simple and consider

these as data transfer objects

(DTOs)

❖ JSON takes the network data and turns it into an object graph, but you

must know the shape of the data and define the object to map it to

Building objects with JSON

public class Contact
{

public string Name { get; set; }
public string Email { get; set; }

}

{ "contacts": [
{
"name": "Alice",
"email": "alice@contoso.com"

},
{
"name": "Bob",
"email": "bob@contoso.com"

},
{
"name": "Nigel",
"email": "nigel@contoso.com"

},
]
}

public class ContactManager
{

public List<Contact> Contacts {
get; set;

}
}

Can do this conversion manually, or use online tools such as http://jsonutils.com and

http://json2csharp.com, there's even an IDE Add-in available: http://bit.ly/json-addin

❖ Use HTTP GET verb to retrieve data and use Json.NET to parse it out

Retrieve data from a REST service

HttpClient client = new HttpClient();
string text = await client.GetStringAsync("https://...");

ContactManager blackBook =
JsonConvert.Deserialize<ContactManager>(text);

...

JsonConvert is a Json.NET class that can serialize and deserialize data from a

JSON string or stream based on a specified Type

❖ Use PostAsync, PutAsync and DeleteAsync to modify resources

Modifying data with HttpClient

public async Task<Contact> Add(Contact c)
{

HttpClient client = new HttpClient();

StringContent content = new StringContent(
JsonConvert.SerializeObject(c),
Encoding.UTF8, "application/json");

var response = await client.PutAsync("https://...", content);
if (response.IsSuccessStatusCode) {

return JsonConvert.DeserializeObject<Contact>(
await response.Content.ReadAsStringAsync());

}

throw new Exception(response.ReasonPhrase);
}

Must serialize body

and include encoding

and content type

❖ Use PostAsync, PutAsync and DeleteAsync to modify resources

Modifying data with HttpClient

public async Task<Contact> Add(Contact c)
{

HttpClient client = new HttpClient();

StringContent content = new StringContent(
JsonConvert.SerializeObject(c),
Encoding.UTF8, "application/json");

var response = await client.PutAsync("https://...", content);
if (response.IsSuccessStatusCode) {

return JsonConvert.DeserializeObject<Contact>(
await response.Content.ReadAsStringAsync());

}

throw new Exception(response.ReasonPhrase);
}

Always use async

versions of APIs for

performance

❖ Use PostAsync, PutAsync and DeleteAsync to modify resources

Modifying data with HttpClient

public async Task<Contact> Add(Contact c)
{

HttpClient client = new HttpClient();

StringContent content = new StringContent(
JsonConvert.SerializeObject(c),
Encoding.UTF8, "application/json");

var response = await client.PutAsync("https://...", content);
if (response.IsSuccessStatusCode) {

return JsonConvert.DeserializeObject<Contact>(
await response.Content.ReadAsStringAsync());

}

throw new Exception(response.ReasonPhrase);
}

Retrieve body from

response on success

and convert back into

object, the response

depends on the

operation being

performed – i.e.

DELETE will just be a

status code

Flash Quiz

① Which serialization format is generally more compact?

a) XML

b) JSON

Flash Quiz

① Which serialization format is generally more compact?

a) XML

b) JSON

Flash Quiz

② How do you inform a service that you prefer JSON-formatted data to

be returned?

a) Add an Accept header to your request

b) Use a URL parameter

c) Either of the above, it depends on the service

Flash Quiz

② How do you inform a service that you prefer JSON-formatted data to

be returned?

a) Add an Accept header to your request

b) Use a URL parameter

c) Either of the above, it depends on the service

Flash Quiz

③ When using HttpClient to interact with an HTTP service, which type

gives you the Status Code of the result?

a) HttpRequestMessage

b) HttpResponseMessage

c) HttpClient

Flash Quiz

③ When using HttpClient to interact with an HTTP service, which type

gives you the Status Code of the result?

a) HttpRequestMessage

b) HttpResponseMessage

c) HttpClient

Flash Quiz

④ HttpClient has convenience methods that make it easy to get which

types of data from a service?

a) int, float, and double

b) String and Object

c) String, Stream, and byte[]

Flash Quiz

④ HttpClient has convenience methods that make it easy to get which

types of data from a service?

a) int, float, and double

b) String and Object

c) String, Stream, and byte[]

Flash Quiz

Communicating with a Book Service

Individual Exercise

❖ Connect to a REST service

❖ Serialize data

❖ Send and receive data from a REST

service

Summary

Integrate with platform-specific

network features

❖ Customize the HttpClient handler

❖ Leverage platform network stacks

❖ Use App Transport Security on iOS

Tasks

❖ HttpClient can be passed a message handler with options to control

how authentication, redirect, cookies, and other HTTP options are

managed

HttpClient customizations

var handler = new HttpClientHandler () {
AllowAutoRedirect = false,
UseProxy = true,
AutomaticDecompression = DecompressionMethods.GZip,
Credentials = new NetworkCredential("user", "passwd")

};

var client = new HttpClient (handler);

❖ Can build delegating message handlers to pre/post process requests

Using custom message handlers

public class MyTraceHandler : DelegatingHandler
{

public MyTraceHandler() : this(new HttpClientHandler()) { }
public MyTraceHandler(HttpMessageHandler inner) : base(inner) { }

protected override async Task<HttpResponseMessage> SendAsync(
HttpRequestMessage request, CancellationToken cancellationToken)

{
Debug.WriteLine(">> {0}", request);
var response = await base.SendAsync (request, cancellationToken);
Debug.WriteLine("<< {0}", response);
return response;

}
}

❖ Can build delegating message handlers to pre/post process requests

Using custom message handlers

HttpClient client = new HttpClient (new MyTraceHandler());
string data = await client.GetStringAsync(

"https://api.duckduckgo.com/?q=donald%20duck&format=json");
...

>> Method: GET, RequestUri: 'https://api.duckduckgo.com/?q=donald duck&format=json', Version: 1.1, Content: <null>, Headers: { }
<< StatusCode: 200, ReasonPhrase: 'OK', Version: 1.1, Content: System.Net.Http.StreamContent, Headers:
{
Server: nginx
Date: Wed, 04 May 2016 18:15:43 GMT
Connection: keep-alive
Cache-Control: max-age=1
Strict-Transport-Security: max-age=0
X-DuckDuckGo-Locale: en_US
Content-Type: application/x-javascript
Content-Length: 6286
Expires: Wed, 04 May 2016 18:15:44 GMT
}{"DefinitionSource":"","Heading":"Donald Duck","ImageWidth":0,"RelatedTopics":[{"Result":" ... "}]

Using a custom Http message handler

Demonstration

❖ HttpClient uses HttpWebRequest under the covers which is a

managed networking stack sitting on a socket layer

❖ Android and iOS both have native networking stacks which are more

efficient, but have unique APIs and are harder to use from C#

Issues with HttpClient

❖ Xamarin.iOS includes two specialized message handlers to allow you to

integrate more deeply with the iOS networking stack

Customize HttpClient for iOS

Socket Layer

CFNetwork

NSUrl

Web Kit
iO

S
 N

e
tw

o
rk

in
g

 s
ta

ck

❖ iOS supplies a native networking stack that makes it convenient to do

networking on iOS (e.g. automatically turns on the networking radio)

iOS native networking stack

Socket Layer

CFNetwork

NSUrl

Web Kit
iO

S
 N

e
tw

o
rk

in
g

 s
ta

ck

❖ Xamarin.iOS includes two specialized message handlers to allow you to

integrate more deeply with the iOS networking stack

Customize HttpClient for iOS

Socket Layer

CFNetwork

NSUrl

Web Kit
iO

S
 N

e
tw

o
rk

in
g

 s
ta

ck

CFNetworkHandler

NSUrlHandler

❖ Xamarin.iOS includes CFNetworkHandler which integrates

HttpClient with the CFNetwork stack

Using CFNetworkHandler

var client = new HttpClient (new CFNetworkHandler());

✓ automatically turns the radio on before starting the request

✓ utilizes iOS connection pooling

✓ automatically applies iOS proxy and network settings

✓ uses dispatch queues instead of managed threads

X requires iOS6+

X platform-specific

❖ Xamarin.iOS includes NSUrlSessionHandler which integrates

HttpClient with the NSUrl stack

Using NSUrlSessionHandler

var client = new HttpClient (new NSUrlSessionHandler());

✓ does everything CFNetworkHandler does

✓ big performance boost for TLS + app size is reduced!

X requires iOS7+

X platform-specific

X not all HttpClient features are supported

❖ Visual Studio allows you to select a

networking stack and TLS

implementation in the iOS project

properties – this allows you to use

the default HttpClient
constructor in a PCL

iOS Native in project settings

The setting is

per configuration,

Debug is shown here

❖ Xamarin.Android includes AndroidClientHandler which integrates

HttpClient with the UrlConnection stack

Android Native in code

var client = new HttpClient (new AndroidClientHandler());

✓ supports TLS 1.2 (in Android 5.0+ and where the device does)

✓ more work is delegated to hardware

✓ app can work with any protocols that Android understands

X platform-specific

X not all HttpClient features are supported

❖ Project options allow you set the Android HTTP client handler, this lets

you use the default HttpClient constructor in a PCL

Android Native in project settings

macOS Windows

Leveraging the native platform network stack

Demonstration

❖ iOS security policy enforces requirements on

network connections

✓ Requires TLS 1.2 or better (https)

✓ Must use a modern key exchange

algorithm that provides forward secrecy

✓ Certificates must be signed with SHA256,

2048-bit RSA key, or better

App Transport Security

❖ New security policy enforces tighter

requirements on network connections

▪ Requires TLS 1.2 or better (https)

▪ Must use a modern key exchange

algorithm that provides forward secrecy

▪ Certificates must be signed with SHA256,

2048-bit RSA key, or better

App Transport Security

If your application is currently using https

and good certificates, then this change will

likely not affect you

❖ ATS secures the native iOS stack:

▪ NSUrlSession/Connection

▪ Embedded web views

▪ Background transfers

▪ ModernHttpClient (Nuget)

❖ Test edge areas of your app that

perform network access such as ad-

revenue, in-app OAuth logins, social

media integration, etc.

What APIs does this affect?

❖ ATS policy violations result in an exception, most common cause is

connection to a non-TLS endpoint

Detecting ATS problems

❖ Must add exceptions into info.plist if your app cannot comply to

restrictions – use new NSAppTransportSecurity key

Adding exceptions for ATS

<key>NSAppTransportSecurity</key>
<dict>

<key>NSExceptionDomains</key>
<dict>

<key>xam150.azurewebsites.net</key>
<dict>

<!-- specific options here -->
</dict>

</dict>
</dict>

Try to identify the

specific endpoints

your app uses and

configure just

those endpoints

Exclusion options

<key>xam150.azurewebsites.net</key>
<dict>

<key>NSExceptionMinimumTLSVersion</key>
<string>TLSv1.0</string>
<key>NSExceptionRequiresForwardSecrecy</key>
<false/>
<key>NSExceptionAllowsInsecureHTTPLoads</key>
<true/>
<key>NSIncludesSubdomains</key>
<true/>

</dict>

Options

expressed as

key/value pairs

Full description of NSAppTransportSecurity options are in Apple technical note

referred to in StartHere.html, check it out for details

<key>xam150.azurewebsites.net</key>
<dict>

<key>NSExceptionMinimumTLSVersion</key>
<string>TLSv1.0</string>
<key>NSExceptionRequiresForwardSecrecy</key>
<false/>
<key>NSExceptionAllowsInsecureHTTPLoads</key>
<true/>
<key>NSIncludesSubdomains</key>
<true/>

</dict>

Exclusion options

Minimum version

of TLS to allow

<key>xam150.azurewebsites.net</key>
<dict>

<key>NSExceptionMinimumTLSVersion</key>
<string>TLSv1.0</string>
<key>NSExceptionRequiresForwardSecrecy</key>
<false/>
<key>NSExceptionAllowsInsecureHTTPLoads</key>
<true/>
<key>NSIncludesSubdomains</key>
<true/>

</dict>

Exclusion options

Do not require

Forward Secrecy

<key>xam150.azurewebsites.net</key>
<dict>

<key>NSExceptionMinimumTLSVersion</key>
<string>TLSv1.0</string>
<key>NSExceptionRequiresForwardSecrecy</key>
<false/>
<key>NSExceptionAllowsInsecureHTTPLoads</key>
<true/>
<key>NSIncludesSubdomains</key>
<true/>

</dict>

Exclusion options

Allow non-https

data transfer

<key>xam150.azurewebsites.net</key>
<dict>

<key>NSExceptionMinimumTLSVersion</key>
<string>TLSv1.0</string>
<key>NSExceptionRequiresForwardSecrecy</key>
<false/>
<key>NSExceptionAllowsInsecureHTTPLoads</key>
<true/>
<key>NSIncludesSubdomains</key>
<true/>

</dict>

Exclusion options

Include subdomains of the

listed top-level domain

❖ Can also disable App Transport Security for all unspecified URLs, allows

arbitrary data access when the endpoint is unknown

Turn off ATS by default

<!-- Turn off ATS in iOS9 -->
<key>NSAppTransportSecurity</key>
<dict>

<key>NSAllowsArbitraryLoads</key>
<true/>

</dict>

Should then turn ATS back on for known endpoints by including specific URL endpoint

definitions with this key set to false

❖ UIApplication.SharedApplication.CanOpenUrl can now only

check for specific URL schemes listed in info.plist, all unlisted

schemes always return false even if the associated app is installed

Whitelisting URLs

<key>LSApplicationQueriesSchemes</key>
<array>

<string>fbapi</string>
<string>fb-messenger-api</string>
<string>fbauth2</string>
<string>fbshareextension</string>

</array>

Support Facebook

URLs for login,

share, etc.

This change does not impact system-provided URLs such as http:, https:, tel:, etc.

Add an exclusion for ATS on iOS

Homework

❖ Customize the HttpClient handler

❖ Leverage platform network stacks

❖ Use App Transport Security on iOS

Summary

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

