
Download class materials from

university.xamarin.com

Layout in Xamarin.Forms

XAM135

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Specify the size of a view

2. Arrange views with StackLayout

3. Apply Attached Properties

4. Arrange views with Grid

5. Scroll a layout with ScrollView

Objectives

❖ Using layout containers to calculate view size and position helps your UI

adapt to varied screen dimensions and resolutions

Motivation

E.g. you request that

views are "stacked"

one after the other

Sizes/positions are recalculated

automatically when device rotates

❖ A layout is a Xamarin.Forms container that determines the size and

position for a collection of children

What is a layout?

Covered in this course

❖ The rendered size of a view is a collaboration between the view itself

and its layout container

Sizing collaboration

Ideally, I'd

like to be

500x100

Sorry, not

enough space

for that

View Layout

❖ Layout panel asks each child how much room it would like, but then tells

each child how much it gets

Layout algorithm

In that case,

I'd like to be

300x100 I'm giving

you a 340x100

rectangle

I can give

you up to

340x620

View Layout

Specify the size of a view

1. Specify preferred size of an

Element

2. Set layout options

Tasks

Flash Quiz

① How would the following code be displayed at runtime?

Flash Quiz

<StackLayout>
<Label Text="Hello" WidthRequest="200" BackgroundColor="Silver" />

</StackLayout>

a) b) c)

① How would the following code be displayed at runtime?

Flash Quiz

<StackLayout>
<Label Text="Hello" WidthRequest="200" BackgroundColor="Silver" />

</StackLayout>

a) b) c) ✓

Default HorizontalOptions
of Fill causes WidthRequest
to be ignored.

❖ By default, most views try to size themselves just large enough to hold

their content (we will see other factors that influence size)

Default view sizing

<Label
Text="Hello"
BackgroundColor="Silver"
VerticalOptions="Center"
HorizontalOptions="Center" />

E.g. by default

Labels are sized

based on their text

❖ A view has four properties that influence its rendered size; they are all

requests and may be overruled by the layout container

View preferences

WidthRequest
HeightRequest
(preferred size)

VerticalOptions
HorizontalOptions
(preferred position in

the rectangle allocated

by the container)

❖ A view can request a desired width and height

Sizing requests

<Label
Text="Hello"
WidthRequest="100"
HeightRequest="300"
BackgroundColor="Silver" />

Preferred size is stored

in the view, but read

and interpreted by its

layout container

❖ Explicit sizes in Xamarin.Forms have no intrinsic units; the values are

interpreted by each platform according to that platform's rules

Size units

Effective pixels

in UWP
Points in iOS

Density-

independent

pixels in Android

❖ Sizes set in Xamarin.Forms are passed to the underlying platform; the

platform will scale the values based on screen size and resolution

Platform rendering

<Label
Text="Hello"
WidthRequest="100"
HeightRequest="300"
BackgroundColor="Silver" />

Rendered at

350x1050 pixels

on a 1440x2392

Nexus 6 which

has a scale factor

of 3.5

Rendered at

200x600 pixels

on a 750x1334

iPhone 6s which

has a scale factor

of 2

Rendered at

200x600 pixels

on a 720x1280

5" Win10 device

which uses a

scale factor of 2

❖ Visual elements report their size/location via properties that are set

during layout; the values are expressed in platform-independent units

Reported sizes

X

Y

Coordinates of the

view's rectangle

within the parent Width Height Size of the view

Bounds reports all

four values in one

Rectangle object

❖ A view can specify layout requests

Layout requests

public class View : ...
{

public LayoutOptions HorizontalOptions { get; set; }
public LayoutOptions VerticalOptions { get; set; }
...

}

Layout preferences are stored

in the view, but read and

interpreted by the layout container

❖ The LayoutOptions struct encapsulates two layout preferences

What are LayoutOptions?

public struct LayoutOptions
{

public LayoutAlignment Alignment { get; set; }
public bool Expands { get; set; }
...

}

public enum LayoutAlignment
{

Start, Center, End, Fill
}

Location within

the rectangle

given by the

container
Used only by StackLayout,

indicates if the view would

like extra space if available

❖ A view's preferred alignment determines its position and size within the

rectangle allocated for it by its container

Alignment

<StackLayout>
<Label Text="Start" HorizontalOptions="Start" BackgroundColor="Silver" />
<Label Text="Center" HorizontalOptions="Center" BackgroundColor="Silver" />
<Label Text="End" HorizontalOptions="End" BackgroundColor="Silver" />
<Label Text="Fill" HorizontalOptions="Fill" BackgroundColor="Silver" />

</StackLayout>

❖ The Fill layout option generally overrides size preferences

Size requests vs. Fill

<StackLayout>
<Label Text="Hello"

WidthRequest="100"
HorizontalOptions="Fill"
BackgroundColor="Silver" />

</StackLayout>
Fill causes

WidthRequest to

be ignored here

❖ Horizontal and vertical alignment options generally default to Fill

Alignment default

<Label Text="Hello" HorizontalOptions="Fill" VerticalOptions="Fill" />

<Label Text="Hello" />

The declaration of these labels is equivalent because of the defaults

Explore alignment options

Group Exercise

Flash Quiz

① How would the following code be displayed at runtime?

Flash Quiz

<StackLayout>
<Label Text="Hello" WidthRequest="200" BackgroundColor="Silver" />

</StackLayout>

a) b) c)

① How would the following code be displayed at runtime?

Flash Quiz

<StackLayout>
<Label Text="Hello" WidthRequest="200" BackgroundColor="Silver" />

</StackLayout>

a) b) c) ✓

Default HorizontalOptions
of Fill causes WidthRequest
to be ignored.

② Which XAML will produce the output shown in the image below?

a)

b)

c)

Flash Quiz

<StackLayout>
<Label Text="Hello" HorizontalOptions="Fill" BackgroundColor="Silver" />

</StackLayout>

<StackLayout>
<Label Text="Hello" HorizontalOptions="Center" BackgroundColor="Silver" />

</StackLayout>

<StackLayout>
<Label Text="Hello" WidthRequest="200" BackgroundColor="Silver" />

</StackLayout>

② Which XAML will produce the output shown in the image below?

a)

b)

c)

Flash Quiz

<StackLayout>
<Label Text="Hello" HorizontalOptions="Fill" BackgroundColor="Silver" />

</StackLayout>

<StackLayout>
<Label Text="Hello" HorizontalOptions="Center" BackgroundColor="Silver" />

</StackLayout>

<StackLayout>
<Label Text="Hello" WidthRequest="200" BackgroundColor="Silver" />

</StackLayout>

HorizontalOptions is not Fill so it's not a)

and the WidthRequest in c) is too large

③ How would the following code be displayed at runtime?

Flash Quiz

a) b) c)

<StackLayout>
<Label Text="Hello" HorizontalOptions="Center" WidthRequest="200" BackgroundColor="Silver" />

</StackLayout>

③ How would the following code be displayed at runtime?

Flash Quiz

a) b) c)✓

HorizontalOptions is not Fill
so WidthRequest is respected

<StackLayout>
<Label Text="Hello" HorizontalOptions="Center" WidthRequest="200" BackgroundColor="Silver" />

</StackLayout>

70

70

70

70

50 50

60

60

40

30
20

10

<StackLayout>
<BoxView Color="Silver" Margin="10,20,30,40"/>
<BoxView Color="Blue" Margin="50,60"/>
<BoxView Color="Gray" Margin="70"/>

</StackLayout>

❖ Margin is extra space around the outside of a view (available in all views,

including containers)

Margin

❖ Padding is extra space on the inside of a layout that creates a gap

between the children and the layout itself (applicable only to layouts)

Padding

<StackLayout Padding="20,40,60,80">
...

</StackLayout>

Children

placed in

this area

80

20 60

40

Flash Quiz

① How would the following code be displayed at runtime?

Flash Quiz

<StackLayout Padding="50">
<BoxView Color="Silver" Margin="50" HeightRequest="50" />
<BoxView Color="Blue" Margin="50" HeightRequest="100" />

</StackLayout>

a) b)

① How would the following code be displayed at runtime?

Flash Quiz

<StackLayout Padding="50">
<BoxView Color="Silver" Margin="50" HeightRequest="50" />
<BoxView Color="Blue" Margin="50" HeightRequest="100" />

</StackLayout>

a) b)✓

Layout padding and view

margin yield 100 here

Each view has a margin

of 50 and they are additive

so the gap here is 100

1. Specify preferred size of an

Element

2. Set layout options

Summary

Arrange views with StackLayout

1. Add views to a StackLayout in

code and XAML

2. Specify layout orientation

3. Use Expands to request extra

space

Tasks

❖ StackLayout arranges its children in a single column or a single row

What is StackLayout?

❖ StackLayout holds a collection of child views

StackLayout children

public class StackLayout : Layout<View>
{
}

public abstract class Layout<T> : ...
{

public IList<T> Children { get { ... } }
}

Stores Views

The views this

panel will display

❖ You can add/remove children from a StackLayout using code

Adding children [code]

<StackLayout x:Name="stack" />

var a = new BoxView() { BackgroundColor = Color.Silver };
var b = new BoxView() { BackgroundColor = Color.Blue };
var c = new BoxView() { BackgroundColor = Color.Gray };

stack.Children.Add(a);
stack.Children.Add(b);
stack.Children.Add(c);

Dynamically add views to the panel

❖ You can add children to a StackLayout in XAML

Adding children [XAML]

<StackLayout>
<BoxView Color="Silver" />
<BoxView Color="Blue" />
<BoxView Color="Gray" />

</StackLayout>

Views are added to the

Children collection

because that is the

Content property

This course will prefer XAML because it is more common than code.

❖ Child layout order is determined by the order they were added to the

Children collection (applies to both code and XAML)

Child ordering

Textual

order

determines

layout

order

<StackLayout>
<BoxView Color="Silver" />
<BoxView Color="Blue" />
<BoxView Color="Gray" />

</StackLayout>

<StackLayout Spacing="30">
<BoxView Color="Silver" />
<BoxView Color="Blue" />
<BoxView Color="Gray" />

</StackLayout>

❖ StackLayout's Spacing separates the children (the default is 6)

StackLayout child spacing

Space added

between

every child

❖ StackLayout's Orientation property lets you choose a vertical

column or a horizontal row

StackLayout orientation

<StackLayout Orientation="Vertical">
<BoxView Color="Silver" />
<BoxView Color="Blue" />
<BoxView Color="Gray" />

</StackLayout>

<StackLayout Orientation="Horizontal">
<BoxView Color="Silver" />
<BoxView Color="Blue" />
<BoxView Color="Gray" />

</StackLayout>

Vertical is

the default

❖ In the direction opposite of its orientation, StackLayout uses the

Start, Center, End, and Fill layout options

LayoutOptions against orientation

<StackLayout Orientation="Vertical">
<Label ... HorizontalOptions="Start" />
<Label ... HorizontalOptions="Center" />
<Label ... HorizontalOptions="End" />
<Label ... HorizontalOptions="Fill" />

</StackLayout>

These horizontal options

are used by a vertical
StackLayout

❖ In the direction of its orientation, StackLayout ignores the Start,

Center, End, and Fill layout options

LayoutOptions with orientation

<StackLayout Orientation="Vertical">
<Label ... VerticalOptions="Start" />
<Label ... VerticalOptions="Center" />
<Label ... VerticalOptions="End" />
<Label ... VerticalOptions="Fill" />

</StackLayout>

These vertical options

are ignored by a

vertical StackLayout

❖ A view's expansion setting determines whether it would like the

StackLayout to allocate available extra space to its rectangle

What is expansion?

The StackLayout
has extra space

Expand

please

Expand

please
Extra space is shared

equally by all children

that request expansion

❖ StackLayout expands children only in the direction of its orientation

Expansion direction

E.g. a vertical
StackLayout
expands vertically

❖ StackLayout determines the amount of extra space using its standard

layout calculation as if there were no expansion

How much extra space?

<StackLayout Orientation="Vertical">
<Label Text="One" HeightRequest="100" ... />
<Label Text="Two" ... />
<Label Text="Three" HeightRequest="50" ... />

</StackLayout>

Uses requested size if provided

or "default" size if not

❖ To request expansion, use the "...AndExpand" version of the layout

options in the direction of the StackLayout's orientation

How to specify expansion?

<StackLayout Orientation="Vertical">
<Label ... VerticalOptions="StartAndExpand" />
<Label ... VerticalOptions="CenterAndExpand" />
<Label ... VerticalOptions="EndAndExpand" />
<Label ... VerticalOptions="FillAndExpand" />

</StackLayout>

These settings give a LayoutOptions
instance with Expands set to true

❖ Enabling expansion can change the size of the view's layout rectangle,

but doesn't change the size of the view unless it uses FillAndExpand

Expansion vs. view size

StartAndExpand CenterAndExpand EndAndExpand FillAndExpand

❖ In the direction opposite of its orientation, adding "...AndExpand" to

the layout options has no effect (there is no expansion in that direction)

No expansion against orientation

<StackLayout Orientation="Vertical">
<Label ... HorizontalOptions="Start" />
<Label ... HorizontalOptions="StartAndExpand" />
<Label ... HorizontalOptions="Center" />
<Label ... HorizontalOptions="CenterAndExpand" />
<Label ... HorizontalOptions="End" />
<Label ... HorizontalOptions="EndAndExpand" />
<Label ... HorizontalOptions="Fill" />
<Label ... HorizontalOptions="FillAndExpand" />

</StackLayout>

Same

Same

Same

Same

Flash Quiz

① How would the following code be displayed at runtime?

Flash Quiz

<StackLayout>
<Label Text="One" VerticalOptions="StartAndExpand" BackgroundColor="Silver" />
<Label Text="Two" VerticalOptions="Center" BackgroundColor="Silver" />
<Label Text="Three" VerticalOptions="FillAndExpand" BackgroundColor="Silver" />

</StackLayout>

a) b)

① How would the following code be displayed at runtime?

Flash Quiz

<StackLayout>
<Label Text="One" VerticalOptions="StartAndExpand" BackgroundColor="Silver" />
<Label Text="Two" VerticalOptions="Center" BackgroundColor="Silver" />
<Label Text="Three" VerticalOptions="FillAndExpand" BackgroundColor="Silver" />

</StackLayout>

a) b) ✓

"One" and "Three" split

the extra space equally,

the rectangle allocated

to "One" goes all the way

to the top of "Two"

② What would you replace the ???? with to achieve the output shown?

Flash Quiz

<StackLayout>
<Label Text="One" VerticalOptions="StartAndExpand" BackgroundColor="Silver" />
<Label Text="Two" VerticalOptions="????" BackgroundColor="Silver" />
<Label Text="Three" VerticalOptions="FillAndExpand" BackgroundColor="Silver" />

</StackLayout>

② What would you replace the ???? with to achieve the output shown?

Flash Quiz

<StackLayout>
<Label Text="One" VerticalOptions="StartAndExpand" BackgroundColor="Silver" />
<Label Text="Two" VerticalOptions="CenterAndExpand" BackgroundColor="Silver" />
<Label Text="Three" VerticalOptions="FillAndExpand" BackgroundColor="Silver" />

</StackLayout>

All labels share the

extra space equally, but

only Three grows since

it uses FillAndExpand

Use StackLayout to build a UI

Individual Exercise

1. Add views to a StackLayout in

code and XAML

2. Specify layout orientation

3. Use Expands to request extra

space

Summary

Apply Attached Properties

1. Apply an Attached Property in code

2. Apply an Attached Property in XAML

Tasks

❖ Some properties are only needed in specific situations

Motivation

Row/column needed

when in a Grid
Request for a back

button needed when

in a NavigationPage

Constraints needed when

in a RelativeLayout

❖ Do not mix all potential properties into a base class; it would make each

object larger and the base class harder to understand

Union is a bad solution

public class MyBaseClass
{

}

Needed when

in a Grid layout
public int Row { get; set; }
public int Column { get; set; }

Needed when in a
NavigationPage

public bool HasBackButton { get; set; }

Needed when in a
RelativeLayout

public Constraint WidthConstraint { get; set; }
public Constraint HeightConstraint { get; set; }

❖ An attached property is a property that is defined in one class but set on

objects of other types

What is an attached property?

Click me!

Grid.Row=1
Grid.Column=2

Button does not have

Row/Column properties

They are defined in Grid
and attached to objects

of other types as needed

❖ You can attached properties from multiple classes to an object

Multiple attached properties

Click me!

Grid.Column=2

AbsoluteLayout.
LayoutFlags=All RelativeLayout.

XConstraint=
{ConstraintExpression...}

❖ Typically, a container will look for attached properties on its children

Who consumes attached properties?

Click me!

Grid.Row=1

Grid.Column=2
AbsoluteLayout.
LayoutFlags=All

When this

button is

in Grid...

...the grid reads the attached properties it needs...and ignores the others

public sealed class BindableProperty
{ ...

public static BindableProperty CreateAttached(...) { ... }
}

❖ Support for creating attached properties is built-in to Xamarin.Forms

Attached property infrastructure

public abstract class BindableObject : ...
{ ...

public object GetValue(BindableProperty property) { ... }
public void SetValue(BindableProperty property, object value) { ... }

}

Registration

Value storage

❖ The owner of an attached property defines the property and access

methods

How to define an attached property

Get/set methods The property definition

(the Property suffix

is used by convention)

public partial class Grid : Layout<View>
{ ...

public static readonly BindableProperty RowProperty = BindableProperty.CreateAttached(...);

public static int GetRow(BindableObject bindable) { ... }
public static void SetRow(BindableObject bindable, int value) { ... }

}

❖ In code, use the static Set method to apply an attached property

Apply an attached property in code

Attach row

and column

settings to

a button

var button = new Button();

Grid.SetRow (button, 1);
Grid.SetColumn(button, 2);

public partial class Grid : Layout<View>
{ ...

public static readonly BindableProperty RowProperty = BindableProperty.CreateAttached(...);

public static int GetRow(BindableObject bindable) { ... }
public static void SetRow(BindableObject bindable, int value) { ... }

}

❖ In XAML, use the owning class name and the attached property name

(without the Property suffix)

Apply an attached property in XAML

public partial class Grid : Layout<View>
{ ...

public static readonly BindableProperty RowProperty = BindableProperty.CreateAttached(...);

public static int GetRow(BindableObject bindable) { ... }
public static void SetRow(BindableObject bindable, int value) { ... }

}

Attach row

and column

settings to

a button

<Button Grid.Row="1" Grid.Column="2" ... />

Flash Quiz

① How would you apply the attached property shown below in XAML?

a) <ContentPage HasBackButton="True"... >

b) <ContentPage NavigationPage.HasBackButtonProperty="True"... >

c) <ContentPage NavigationPage.HasBackButton="True"... >

Flash Quiz

① How would you apply the attached property shown below in XAML?

a) <ContentPage HasBackButton="True"... >

b) <ContentPage NavigationPage.HasBackButtonProperty="True"... >

c) <ContentPage NavigationPage.HasBackButton="True"... >

Flash Quiz

1. Apply an Attached Property in code

2. Apply an Attached Property in XAML

Summary

Arrange views with Grid

Tasks

1. Specify grid row and column sizes

2. Add children to grid cells

❖ Grid places its children into cells formed from rows and columns

What is Grid?

❖ You specify the shape of the grid by defining each row and column

individually

Grid rows/columns

Fixed height of 100

Share remaining

space 1/3 and 2/3

As high as tallest child Column definitions

are analogous except

you set the width

rather than the height

❖ There are dedicated classes that define a row or a column

Row/column definitions

public sealed class RowDefinition : ...
{ ...

public GridLength Height { get; set; }
}

public sealed class ColumnDefinition : ...
{ ...

public GridLength Width { get; set; }
}

Specify

row

height

Specify

column

width

❖ GridLength encapsulates two things: unit and value

What is GridLength?

public struct GridLength
{ ...

public GridUnitType GridUnitType { get; }
public double Value { get; }

}

Units can be: Absolute, Auto, Star

❖ Absolute GridLength specifies a fixed row height or column width

Absolute GridLength

var row = new RowDefinition() { Height = new GridLength(100) };

<RowDefinition Height="100" />

Value is in platform-

independent units

❖ Auto GridLength lets the row height or column width adapt, it

automatically becomes the size of the largest child

Auto GridLength

var row = new RowDefinition() {Height = new GridLength(1, GridUnitType.Auto)};

<RowDefinition Height="Auto" />

Value is irrelevant for Auto, it

is typical to use 1 as the value

when creating in code

❖ Star GridLength shares the available space proportionally among all

rows/columns that use star sizing

Star GridLength

var row = new RowDefinition() { Height = new GridLength(2.5, GridUnitType.Star) };

<RowDefinition Height="2.5*" />

XAML type converter uses * instead of the Star used in code.

Note: "1*" and "*" are equivalent in XAML.

❖ Grid contains collections for the row and column definitions

Grid row/column collections

public partial class Grid : Layout<View>
{

...
public ColumnDefinitionCollection ColumnDefinitions { get; set; }
public RowDefinitionCollection RowDefinitions { get; set; }

}

You add items to these collections

to create the rows/columns

❖ It is common to mix different GridLength settings in the same grid

Grid example

<Grid>
<Grid.RowDefinitions>

</Grid.RowDefinitions>
...

</Grid>

Fixed height of 100

<RowDefinition Height="100" />As high as tallest child
<RowDefinition Height="Auto" />

Share remaining

space 1/3 and 2/3

<RowDefinition Height="1*" />
<RowDefinition Height="2*" />

❖ Rows and columns default to "1*" size

Default size

<Grid>
<Grid.RowDefinitions>

<RowDefinition />
<RowDefinition />
<RowDefinition />

</Grid.RowDefinitions>

<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />

</Grid.ColumnDefinitions>
...

</Grid>

Yields a uniform

3x2 grid

❖ The row/column numbering starts at 0

Row/column numbering

0

1

2

3

0 1

❖ Grid defines four attached properties used to position children

Grid positioning properties

❖ Apply the Row and Column attached properties to each child

Cell specification

0

1

2

0 1<Grid>
<Grid.RowDefinitions>

<RowDefinition />
<RowDefinition />
<RowDefinition />

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>

<ColumnDefinition />
<ColumnDefinition />

</Grid.ColumnDefinitions>

<BoxView Grid.Row="1" Grid.Column="0"
BackgroundColor="Navy" />

</Grid>

Specify

row/

column

❖ Apply RowSpan and ColumnSpan to each child as needed

Span specification

0

1

2

0 1<Grid>
<Grid.RowDefinitions>

<RowDefinition />
<RowDefinition />
<RowDefinition />

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>

<ColumnDefinition />
<ColumnDefinition />

</Grid.ColumnDefinitions>

<BoxView Grid.Row="1" Grid.Column="0"
Grid.ColumnSpan="2"
BackgroundColor="Navy" />

</Grid>

Specify

span

❖ Cell locations default to 0 and spans default to 1

Cell and span defaults

0

1

2

0 1<Grid>
<Grid.RowDefinitions>

<RowDefinition />
<RowDefinition />
<RowDefinition />

</Grid.RowDefinitions>
<Grid.ColumnDefinitions>

<ColumnDefinition />
<ColumnDefinition />

</Grid.ColumnDefinitions>

<BoxView BackgroundColor="Navy" />
</Grid>

Placed

in cell

(0,0)

❖ A view's horizontal and vertical layout options control how it is sized and

positioned within its grid cell (the default is Fill)

Layout options

<Grid>
...
<BoxView HorizontalOptions="Center"

VerticalOptions="End"
BackgroundColor="Navy"
WidthRequest="50"
HeightRequest="50" />

</Grid>

0

1

2

0 1

Position

within

the cell

<Grid RowSpacing="30" ColumnSpacing="10">
<BoxView Color="Silver" Grid.Row="0" Grid.Column="0" />
<BoxView Color="Blue" Grid.Row="0" Grid.Column="1" />
<BoxView Color="Black" Grid.Row="1" Grid.Column="0" />
<BoxView Color="Gray" Grid.Row="1" Grid.Column="1" />

</Grid>

❖ Grid's RowSpacing and ColumnSpacing properties separate the

children (they both default to 6)

Grid child spacing

Row spacing

Column spacing

❖ Grid redefines its Children to use a custom list that provides several

overloaded Add methods

Grid Children

public partial class Grid : Layout<View>
{

...
public new IGridList<View> Children { get { ... } }

}

This property hides

the inherited one

Can specify row/column

when adding children

❖ IGridList provides several Add methods that are more specialized

than typically found in a list

Add children programmatically

var grid = new Grid();
int row, column;
...

grid.Children.Add(label, column, row);

Yields a
ColumnSpan
of 1

Yields a
RowSpan
of 2

grid.Children.Add(button, column, column+1, row, row+2);

❖ Grid will automatically generate equal-sized rows/columns based on

the position of the children you add

Auto-generated rows/columns

<Grid>
<Button Grid.Row="1" Grid.Column="1" Text="OK" />
<Button Grid.Row="2" Grid.Column="0" Text="Cancel" />

</Grid>

Maximum index is 2 so

the grid will have 3 rows
Maximum index is 1 so

the grid will have 2 columns

Use Grid to build a UI

Individual Exercise

Summary

1. Specify grid row and column sizes

2. Add children to grid cells

Scroll a layout with ScrollView

1. Use ScrollView to add scrolling

2. Set the scroll direction

Tasks

❖ ScrollView adds scrolling to a single piece of content; the content can

be an individual view or a layout container

What is ScrollView?

❖ Wrap a ScrollView around a single element to add scrolling

How to use ScrollView

<ScrollView>
<StackLayout>

<BoxView Color="Silver" HeightRequest="100" />
<BoxView Color="Blue" HeightRequest="200" />
<BoxView Color="Gray" HeightRequest="300" />
<BoxView Color="Navy" HeightRequest="200" />

</StackLayout>
</ScrollView>

Scroll

indicator

❖ ScrollView lets you control the scroll direction: Vertical (the

default), Horizontal, or Both

ScrollView orientation

<ScrollView Orientation="Both">
<Image Source="monkey.jpg"

HeightRequest="1000"
WidthRequest="1000" />

</ScrollView>

Image is larger

than its container

Vertical indicator

Horizontal indicator

❖ Generally, do not nest ScrollViews or a ListView in a ScrollView,

it often creates non-intuitive behavior

Do not nest scrolling views

<ScrollView>
<StackLayout>

<Label Text="Prefix" />
<Entry x:Name="prefix" />
<ListView x:Name="listView" />

</StackLayout>
</ScrollView>

Can scroll

just the
ListView
content

Can scroll

the entire

ScrollView

1. Use ScrollView to add scrolling

2. Set the scroll direction

Summary

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

