Layout in Xamarin.Forms

Download class materials from
university.xamarin.com

== Microsoft Xamarin University

Information in this document is subject to change without notice. The example companies,
organizations, products, people, and events depicted herein are fictitious. No association with
any real company, organization, product, person or event is intended or should be inferred.
Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other
intellectual property rights covering subject matter in this document. Except as expressly
provided in any license agreement from Microsoft or Xamarin, the furnishing of this document
does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual
Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other
countries.

Other product and company names herein may be the trademarks of their respective owners.

Objectives

CoA W

Specify the size of a view

Arrange views with StackLayout
Apply Attached Properties
Arrange views with Grid

Scroll a layout with ScrollView

€D xamarin University

Motivation

% Using layout containers to calculate view size and position helps your Ul
adapt to varied screen dimensions and resolutions

Enter a Phoneword:

E.g. you request that
views are "stacked" —> .)
one after the other '

\

)

| = | Sizes/positions are recalculated
- = automatically when device rotates

€D Xamarin University

What is a layout?

% A layout is a Xamarin.Forms container that determines the size and
position for a collection of children

4 R r ~

. , N y,

. J

StackLayout Grid AbsolutelLayout RelativeLayout

Covered in this course

€ Xamarin University

Sizing collaboration

% The rendered size of a view is a collaboration between the view itself
and its layout container

[deally, I'a
like to be
500x100

sorry, not
enough space
for that

€& xamarin University

Layout algorithm

% Layout panel asks each child how much room it would like, but then tells
each child how much it gets

~ | can give
you up to
340x620

In that case,

I'd like to be . -
300100 I'm giving
you a 340x100

rectangle

mE l:l:ii:i"
e

Specity the size of a view

Xamarin
*“9} University

Tasks

1. Specify preferred size of an A E
Element

2. Set layout options

Flash Quiz

Xamarin
& University

€D xamarin University

Flash Quiz

@® How would the following code be displayed at runtime?

<StackLayout>
<Label Text="Hello" WidthRequest="200" BackgroundColor="Silver" />
</StackLayout>

Carrier ¥ 10:22 PM [T Carrier ¥ 10:20 PM [1] Carrier ¥ 10:01 PM [0
Hello Hello Hello

a) b) C)

€D xamarin University

Flash Quiz

@® How would the following code be displayed at runtime?

<StackLayout>
<Label Text="Hello" WidthRequest="200" BackgroundColor="Silver" />
</StackLayout>

Carrier ¥ 10:01 PM [0
Hello

C) v

Default HorizontalOptions
of Fill causes WidthRequest
to be ignored.

€D xamarin University

Default view sizing

% By default, most views try to size themselves just large enough to hold
their content (we will see other factors that influence size)

Carrier ¥ 315 PM -

<Label
Text="Hello" E.g. by default
BackgroundColor="Silver" e €———— L abels are sized
VerticalOptions="Center" based on their text
HorizontalOptions="Center" />

€D xamarin University

View preferences

% A view has four properties that influence its rendered size; they are all
requests and may be overruled by the layout container

e 2

VerticalOptions
WidthRequest HorizontalOptions
HeightRequest > & I | € (preferred position in
(preferred size) : = the rectangle allocated

by the container)

€D xamarin University

Sizing requests

% A view can request a desired width and height

<Label
Preferred size is stored Text="Hello"
in the view, but read WidthRequest="100"
. > M
and mterpreﬁed by its HeightRequest="300"
layout container BackgroundColor="Silver" />

€& xamarin University

Size units

% Explicit sizes in Xamarin.Forms have no intrinsic units; the values are
interpreted by each platform according to that platform's rules

Density-
Points in iOS independent
pixels in Android

Effective pixels

in UWP

€D Xamarin University

Platform rendering

% Sizes set in Xamarin.Forms are passed to the underlying platform; the
platform will scale the values based on screen size and resolution

<Label

Text="Hello"

WidthRequest="100"

HeightRequest="300" Rendered at Rendered at Rendered at

BackgroundColor="Silver" /> 200x600 pixels 200x600 pixels 350x1050 pixels
on a 720x1280 on a 750x1334 on a 1440x2392
5" Win10 device iPhone 6s which Nexus 6 which
which uses a has a scale factor has a scale factor
scale factor of 2 of 2 of 3.5

€D xamarin University

Reported sizes

% Visual elements report their size/location via properties that are set
during layout; the values are expressed in platform-independent units

. ()
Coordinates of the
view's rectangle —->|Y
within the parent X e :IHeight <— Size of the view
Bounds reports all 1

four values in one
Rectangle object

€D xamarin University

Layout requests

% A view can specify layout requests

public class View :
{
public LayoutOptions HorizontalOptions { get; set; }
public LayoutOptions VerticalOptions { get; set; }
}

|
Layout preferences are stored

in the view, but read and
interpreted by the layout container

What are LayoutOptions?

€D xamarin University

% The LayoutOptions struct encapsulates two layout preferences

Location within
the rectangle
given by the
container

public struct LayoutOptions
{

}

»public LayoutAlignment Alignment { get; set; }
public bool Expands { get; set; }

public enum LayoutAlignment

{
}

Start, Center, End, Fill

Used only by StackLayout,
indicates if the view would
like extra space if available

€D xamarin University

Alignment

% A view's preferred alignment determines its position and size within the
rectangle allocated for it by its container

<StackLayout>
<Label Text="Start" HorizontalOptions="Start"™ BackgroundColor="Silver" />
<Label Text="Center" HorizontalOptions="Center" BackgroundColor="Silver" />
<Label Text="End" HorizontalOptions="End" BackgroundColor="Silver" />
<Label Text="Fill" HorizontalOptions="Fill" BackgroundColor="Silver" />
</StackLayout>

Carrier ¥ 9:08 PM 2
Start

Center
End
Fill

Size requests vs. Fill

€D xamarin University

% The Fill layout option generally overrides size preferences

<StackLayout>
<Label Text="Hello"
WidthRequest="100"
HorizontalOptions="Fill"
BackgroundColor="Silver" />
</StackLayout>

Carrier 9:38 PM L}

Fill causes
WidthRequest to
be ignored here

€D xamarin University

Alignment default

% Horizontal and vertical alignment options generally default to Fill

<Label Text="Hello" HorizontalOptions="Fill" VerticalOptions="Fill" />

<Label Text="Hello" />

!

The declaration of these labels is equivalent because of the defaults

Group Exercise

Explore alignment options

Xamarin
@_} University

Flash Quiz

Xamarin
& University

€D xamarin University

Flash Quiz

@® How would the following code be displayed at runtime?

<StackLayout>
<Label Text="Hello" WidthRequest="200" BackgroundColor="Silver" />
</StackLayout>

Carrier ¥ 10:22 PM [T Carrier ¥ 10:20 PM [1] Carrier ¥ 10:01 PM [0
Hello Hello Hello

a) b) C)

€D xamarin University

Flash Quiz

@® How would the following code be displayed at runtime?

<StackLayout>
<Label Text="Hello" WidthRequest="200" BackgroundColor="Silver" />
</StackLayout>

Carrier ¥ 10:01 PM [0
Hello

C) v

Default HorizontalOptions
of Fill causes WidthRequest
to be ignored.

€D xamarin University

Flash Quiz

@ Which XAML will produce the output shown in the image below?

a) <StackLayout>
<Label Text="Hello" HorizontalOptions="Fill" BackgroundColor="Silver" />
</StackLayout>

b) <StackLayout>
<Label Text="Hello" HorizontalOptions="Center" BackgroundColor="Silver" />
</StackLayout>

C)| <stackLayout>
<Label Text="Hello" WidthRequest="200" BackgroundColor="Silver" />
</StackLayout>

Carrier ¥ 10:20 PM &
Hello

€D xamarin University

Flash Quiz

@ Which XAML will produce the output shown in the image below?
a)

b) <StackLayout>
<Label Text="Hello" HorizontalOptions="Center" BackgroundColor="Silver" />

</StackLayout>
9
Carier = " - HorizontalOptions is not Fill so it's not a)

and the WidthRequest in ¢) is too large

€D xamarin University

Flash Quiz

@ How would the following code be displayed at runtime?

<StackLayout>
<Label Text="Hello" HorizontalOptions="Center" WidthRequest="200" BackgroundColor="Silver" />
</StackLayout>

Carrier ¥ 10:22 PM [T Carrier ¥ 10:20 PM [1] Carrier ¥ 10:01 PM [0
Hello Hello Hello

a) b) C)

€D xamarin University

Flash Quiz

@ How would the following code be displayed at runtime?

<StackLayout>
<Label Text="Hello" HorizontalOptions="Center" WidthRequest="200" BackgroundColor="Silver" />
</StackLayout>

Carrier ¥ 10:22 PM [T
Hello

a) 1\ v

HorizontalOptions is not Fill
so WidthRequest is respected

€D xamarin University

Margin

% Margin is extra space around the outside of a view (available in all views,

including containers) T —
10 30
40
__ s
so I o
<StackLayout>
<BoxView Color="Silver" Mar‘gin="10, 20,30,40" /> | b S 8 ..
<BoxView Color="Blue" Margin="50,60"/>
<BoxView Color="Gray" Margin="70"/> 7o I
</StackLayout> 20

€D Xamarin University

Padding

% Padding is extra space on the inside of a layout that creates a gap
between the children and the layout itself (applicable only to layouts)

Carrier & 1:21PM -

40
<StackLayout Padding="20,40,60,80"> Children

ot 20 placedin €0
</StackLayout> T

80

Flash Quiz

Xamarin
& University

€D xamarin University

Flash Quiz

@® How would the following code be displayed at runtime?

<StackLayout Padding="50">
<BoxView Color="Silver" Margin="50" HeightRequest="50" />
<BoxView Color="Blue" Margin="50" HeightRequest="100" />
</StackLayout>

€D xamarin University

Flash Quiz

@® How would the following code be displayed at runtime?

<StackLayout Padding="50">
<BoxView Color="Silver" Margin="50" HeightRequest="50" />
<BoxView Color="Blue" Margin="50" HeightRequest="100" />

</StackLayout>

Layout padding and view
margin yield 100 here

Each view has a margin =~ —>

of 50 and they are additive
so the gap here is 100 -

Summary

1. Specify preferred size of an A E
Element

2. Set layout options

Arrange views with StacklLayout

Xamarin
& University

Tasks

1. Add views to a StackLayout in
code and XAML

2. Specify layout orientation

3. Use Expands to request extra
space

€D xamarin University

What is StackLayout?

% StackLayout arranges its children in a single column or a single row

€D xamarin University

StackLayout children

% StackLayout holds a collection of child views

public abstract class Layout<T> :

. . {
The views this |~ public IList<T> Children { get { ... } }
panel will display }

public class StacklLayout : Layout<View>

{
}

|
Stores Views

€D xamarin University

Adding children [code]

% You can add/remove children from a StackLayout using code

<StackLayout x:Name="stack" /> =
var a = new BoxView() { BackgroundColor = Color.Silver };
var b = new BoxView() { BackgroundColor = Color.Blue };
var ¢ = new BoxView() { BackgroundColor = Color.Gray };

stack.Children.Add(a);
stack.Children.Add(b);
stack.Children.Add(c);

Dynamically add views to the panel

Adding chil

dren [XAML]

% You can add children to a StackLayout in XAML

Views are added to the
Children collection
because that is the
Content property

<StackLayout>

<BoxView Color="Blue"
<BoxView Color="Gray"

</StackLayout>

—> <BoxView Color="Silver" />

/>
/>

€D xamarin University

This course will prefer XAML because it is more common than code.

Child ordering

% Child layout order is determined by the order they were added to the

Children collection (applies to both code and XAML)

Textual
order

.

<StackLayout>

determines=—> <BoxView Color="Blue"

layout
order

<BoxView Color="Gray"
</StackLayout>

<BoxView Color="Silver" />

/>
/>

€D xamarin University

€D xamarin University

StacklLayout child spacing

% StackLayout's Spacing separates the children (the default is 6)

Carrier & 4:57 PM L&

<StackLayout Spacing="30">
<BoxView Color="Silver" />

<BoxView Color="Blue" />
<BoxView Color="Gray" />
</StackLayout>
Space added
between

every child

€D xamarin University

StacklLayout orientation

% StackLayout's Orientation property lets you choose a vertical
column or a horizontal row

Vertical is <StackLayout Orientation="Vertical"> E—
the default <BoxView Color="Silver" />
<BoxView Color="Blue" />
<BoxView Color="Gray" />
</StackLayout>

<StackLayout Orientation="Horizontal">
<BoxView Color="Silver" />
<BoxView Color="Blue" />
<BoxView Color="Gray" />
</StackLayout>

€D xamarin University

LayoutOptions against orientation

% In the direction opposite of its orientation, StackLayout uses the
Start, Center, End, and Fill layout options

<StackLayout Orientation="Vertical">
<Label ... HorizontalOptions="Start" />
<Label ... HorizontalOptions="Center" />
<Label ... HorizontalOptions="End" />
<Label ... HorizontalOptions="Fill" />
</StackLayout> 1\
Carrier = 9:08 PM L2 I
Start These horizontal options
Center .
=y are used by a vertical

Fill StackLayout

LayoutOptions with orientation

€D xamarin University

% In the direction of its orientation, StackLayout ignores the Start,

Center, End, and Fill layout options

<StackLayout Orientation="Vertical">

<Label ... VerticalOptions="Start" />

<Label ... VerticalOptions="Center" />

<Label ... VerticalOptions="End" />

<Label ... VerticalOptions="Fill" />
</StackLayout>

I
These vertical options

are ignored by a
vertical StackLayout

€ Xamarin University

What is expansion?

% A view's expansion setting determines whether it would like the
StackLayout to allocate available extra space to its rectangle

4) 4)

Expand
please

Expand
@ m~

The StackLayout 5
has extra space

|5

V4

NG Extra space is shared
equally by all children
that request expansion

€D Xamarin University

Expansion direction

% StackLayout expands children only in the direction of its orientation

E.g. a vertical
StackLayout —
expands vertically

€D xamarin University

How much extra space?

% StackLayout determines the amount of extra space using its standard
layout calculation as if there were no expansion

<StackLayout Orientation="Vertical">
<Label Text="One" HeightRequest="100" ... />

<Label Text="Two" e />
<Label Text="Three" HeightRequest="50" ... />
</StackLayout>

I
Uses requested size if provided

or "default" size if not

€D xamarin University

How to specity expansion?

% To request expansion, use the ". . .AndExpand" version of the layout
options in the direction of the StackLayout's orientation

<StackLayout Orientation="Vertical">
<Label ... VerticalOptions="StartAndExpand"” />
<Label ... VerticalOptions="CenterAndExpand" />
<Label ... VerticalOptions="EndAndExpand" />
<Label ... VerticalOptions="FillAndExpand" />
</StackLayout> T

|
These settings give a LayoutOptions
instance with Expands set to true

EXpansion vs. view size

€D xamarin University

% Enabling expansion can change the size of the view's layout rectangle,
but doesn't change the size of the view unless it uses FillAndExpand

=)

4 N N\ N)
\ AN L AN J
StartAndExpand CenterAndExpand EndAndExpand FillAndExpand

€D xamarin University

NoO expansion against orientation

% In the direction opposite of its orientation, adding ". . . AndExpand" to
the layout options has no effect (there is no expansion in that direction)

<StackLayout Orientation="Vertical">
<Label ... HorizontalOptions="Start" />
<Label ... HorizontalOptions="StartAndExpand" /z_}>_5arne
<Label ... HorizontalOptions="Center" />
<Label ... HorizontalOptions="CenterAndExpand" /x_}>_5arne
<Label ... HorizontalOptions="End" />
<Label ... HorizontalOptions="EndAndExpand" /z_}>—5arne
<Label ... HorizontalOptions="Fill" />
<Label ... HorizontalOptions="FillAndExpand" /z_}>_5arne
</StackLayout>

Flash Quiz

Xamarin
& University

€D xamarin University

Flash Quiz

@® How would the following code be displayed at runtime?

<StackLayout>
<Label Text="One" VerticalOptions="StartAndExpand" BackgroundColor="Silver" />
<Label Text="Two" VerticalOptions="Center" BackgroundColor="Silver" />

<Label Text="Three" VerticalOptions="FillAndExpand" BackgroundColor="Silver" />
</StackLayout>

Carriar : o
One One

Two Two
Three

€D xamarin University

Flash Quiz

@® How would the following code be displayed at runtime?

<StackLayout>
<Label Text="One" VerticalOptions="StartAndExpand" BackgroundColor="Silver" />
<Label Text="Two" VerticalOptions="Center" BackgroundColor="Silver" />

<Label Text="Three" VerticalOptions="FillAndExpand" BackgroundColor="Silver" />
</StackLayout>

"One" and "Three" split
the extra space equally,

o <— the rectangle allocated
to "One" goes all the way
to the top of "Two"

€D xamarin University

Flash Quiz

@ What would you replace the ???? with to achieve the output shown?

<StackLayout>
<Label Text="One" VerticalOptions="StartAndExpand” BackgroundColor="Silver" />
<Label Text="Two" VerticalOptions="????" BackgroundColor="Silver" />

<Label Text="Three" VerticalOptions="FillAndExpand" BackgroundColor="Silver" />
</StackLayout>

Two

Flash Quiz

€D xamarin University

@ What would you replace the ???? with to achieve the output shown?

<StackLayout>

<Label Text="One" VerticalOptions="StartAndExpand” BackgroundColor="Silver" />
<Label Text="Two" VerticalOptions="CenterAndExpand" BackgroundColor="Silver" />

<Label Text="Three" VerticalOptions="FillAndExpand"
</StackLayout>

BackgroundColor="Silver" />

All labels share the

extra space equally, but
only Three grows since
It uses FillAndExpand

Individual Exercise

Use StackLayout to build a Ul

Xamarin
& University

Summary

1.

Add views to a StackLayout in
code and XAML

Specify layout orientation

Use Expands to request extra
space

B l:l:ii:i"
S

Apply Attached Properties

Xamarin
@ University

Tasks

1. Apply an Attached Property in code
2. Apply an Attached Property in XAML

€D xamarin University

Motivation

% Some properties are only needed in specific situations

e p e R 4 N

(. / (. / " J
Row/column needed Constraints needed when Request for a back
when in a Grid in a Relativelayout button needed when

in a NavigationPage

€D xamarin University

Union is a bad solution

% Do not mix all potential properties into a base class; it would make each
object larger and the base class harder to understand

Needed when

in a Grid layout +——>

Needed whenina
Relativelayout

Needed when in a -

{

NavigationPage

}

public class MyBaseClass

public
public

public
public

—> public

int Row { get; set; }
int Column { get; set; }

Constraint WidthConstraint { get; set; }
Constraint HeightConstraint { get; set; }

bool HasBackButton { get; set; }

€ Xamarin University

What is an attached property?

% An attached property is a property that is defined in one class but set on
objects of other types

Button does not have

Row/Column properties — C||Ck me!

They are defined in Grid
and attached to objects —> Grid.Row=1
of other types as needed ;

Grid.Column=2

. _

€ Xamarin University

Multiple attached properties

% You can attached properties from multiple classes to an object

Absolutelayout.

_ Relativelayout.
LayoutFlags=All Co

Grid.Column=2 {ConstraintExpression...}

- e

€& xamarin University

Who consumes attached properties?

% Typically, a container will look for attached properties on its children

When this
button is =—>
N Grid...

Grid.Column=2

Absolutelayout.
Grid.Row=1 LayoutFlags=All

r ?)

..the grid reads the attached properties it needs...and ignores the others

€D xamarin University

Attached property infrastructure

% Support for creating attached properties is built-in to Xamarin.Forms

public sealed class BindableProperty

{ ...

Registration=—>public static BindableProperty CreateAttached(...) { ... }
¥

public abstract class BindableObject : ...
{

Value storage=——>
}

public object GetValue(BindableProperty property) { ... }
public void SetValue(BindableProperty property, object value) { ... }

€D xamarin University

How to define an attached property

% The owner of an attached property defines the property and access
methods

public partial class Grid : Layout<View>

{ public static readonly BindableProperty RowProperty = BindableProperty.CreateAttached(...);
public static int GetRow(BindableObject bindable)|{ ... }
public static void SetRow(BindableObject bindable,| int value) { ... }
}
I
Get/set methods The property definition

(the Property suffix
is used by convention)

€D xamarin University

Apply an attached property in code

% In code, use the static Set method to apply an attached property

var button = new Button();
Attach row
and column Grid.SetRow (button, 1);
. —_> .
settings to Grid.SetColumn(button, 2);
a button

public partial class Grid : Layout<View>

{

}

public static readonly BindableProperty RowProperty = BindableProperty.CreateAttached(...);

public static int GetRow(BindableObject bindable) { ... }
public static void SetRow(BindableObject bindable, int value) { ... }

€D xamarin University

Apply an attached property in XAML

% In XAML, use the owning class name and the attached property name
(without the Property suffix)

Attach row
and column
settings to
a button

—>| <Button Grid.Row="1" Grid.Column="2" ... />

public partial class Grid : Layout<View>

{ ...
public static readonly BindableProperty RowProperty = BindableProperty.CreateAttached(...);
public static int GetRow(BindableObject bindable) { ... }
public static void SetRow(BindableObject bindable, int value) { ... }

}

Flash Quiz

Xamarin
& University

€D xamarin University

Flash Quiz

@® How would you apply the attached property shown below in XAML?
a) <ContentPage HasBackButton="True"... >
b) <ContentPage NavigationPage.HasBackButtonProperty="True"... >
c) <ContentPage NavigationPage.HasBackButton="True"... >

Xamarin.Forms.NavigationPage Class

A Page that manages the navigation and user-experience of a stack of other pages.

static HasBackButtonProperty BindableProperty. Backing store for the HasBackButton property.

readonly

€D xamarin University

Flash Quiz

@ How would you apply the attached property shown below in XAML?
a) <ContentPage HasBackButton="True"... >
b) <ContentPage NavigationPage.HasBackButtonProperty="True"... >
c) <ContentPage NavigationPage.HasBackButton="True"... >

Xamarin.Forms » NavigationPage

Xamarin.Forms.NavigationPage Class

A Page that manages the navigation and user-experience of a stack of other pages.

static HasBackButtonProperty BindableProperty. Backing store for the HasBackButton property.
readonly

Summary

1. Apply an Attached Property in code
2. Apply an Attached Property in XAML

Arrange views with Grid

Xamarin
*“9} University

(Op)]
D
N
W
-
-
=
@)
O
O
-
G
=
O
|-
O
[N
(@)
>
py
O
@
o
)

2
S
)
O
[N
(@)
O
4—
-
@
S
1S
c
)
O
O
<

Tasks

1.

2.

€ Xamarin University

What is Grid?

% Grid places its children into cells formed from rows and columns

€D xamarin University

Grid rows/columns

% You specify the shape of the grid by defining each row and column
individually

Fixed height of 100 —> | [
As high as tallest child —> Column definitions
are analogous except
Share remaining _ I you Set the Width
Space 1/3 and 2/3 A rather than the helght
....... \ j

€D xamarin University

Row/column definitions

%+ There are dedicated classes that define a row or a column

public sealed class RowDefinition :

Specify | { ...
row ——> public GridLength Height { get; set; }
height |}

public sealed class ColumnDefinition :
Specify [{ ...

column ——> public GridLength Width { get; set; }
width }

€D xamarin University

What is GridLength?

% GridLength encapsulates two things: unit and value

public struct GridLength
{ ...
public GridUnitType GridUnitType { get; }
public double Value { get; }
}

Units can be: Absolute, Auto, Star

€D xamarin University

Absolute GridLength

% Absolute GridLength specifies a fixed row height or column width

var row = new RowDefinition() { Height = new GridLength(100) };

<RowDefinition Height="100" />

f

Value is in platform-
independent units

€D xamarin University

Auto GridLength

% Auto GridLength lets the row height or column width adapt, it
automatically becomes the size of the largest child

var row = new RowDefinition() {Height = new GridLength(1, GridUnitType.Auto)};

<RowDefinition Height="Auto" /> T

Value is irrelevant for Auto, it
is typical to use 1 as the value
when creating in code

€D xamarin University

Star GridLength

% Star GridLength shares the available space proportionally among all
rows/columns that use star sizing

var row = new RowDefinition() { Height = new GridLength(2.5, GridUnitType.Star) };

<RowDefinition Height="2.5*" />

XAML type converter uses * instead of the Star used in code.
Note: "1*" and "*" are equivalent in XAML.

€D xamarin University

Grid row/column collections

%+ Grid contains collections for the row and column definitions

public partial class Grid : Layout<View>

{

public ColumnDefinitionCollection ColumnDefinitions { get; set; }
public RowDefinitionCollection RowDefinitions { get; set; }

} 1

|
You add items to these collections
to create the rows/columns

€D Xamarin University

Grid example

% It is common to mix different GridLength settings in the same grid

(")
Fixed height of 100 —> || || <Grid>
5 <Grid.RowDefinitions>
,Asfﬂgh a< tallest child — | <RowDefinition Height="100" />

<RowDefinition Height="Auto" />
<RowDefinition Height="1*" />
....... . , <R0wDe-Finition Height:"z*" />

Share remaining </Grid.RowDefinitions>

space 1/3 and 2/3

</Grid>

€& xamarin University

Default size

% Rows and columns default to "1*" size

<Grid> ﬁ' ; %
<Grid.RowDefinitions> | L] § g 3.
<RowDefinition /> 5
<RowDefinition />
<RowDefinition />
</Grid.RowDefinitions>

Yields a uniform

<Grid.ColumnDefinitions> 3X2 ngj
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>

</Grid> N 7

€D Xamarin University

Row/column numbering

% The row/column numbering starts at O

€D xamarin University

Grid positioning properties

% Grid defines four attached properties used to position children

ATTACHED PROPERTY

Column

ColumnSpan

Row

RowSpan

VALUE

An integer that represents the Column in which the item will appear.

An integer that represents the number of Columns that the item will span.
An integer that represents the row in which the item will appear.

An integer that represents the number of rows that the item will span.

€D Xamarin University

Cell specification

% Apply the Row and Column attached properties to each child

<Grid» -0 .1
<Grid.RowDefinitions> /i § N
<RowDefinition /> | ep—————l
<RowDefinition /> 0
<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>
<ColumnDefinition />
<ColumnDefinition />
</Grid.ColumnDefinitions>

Specify >
row/ ——><BoxView Grid.Row="1" Grid.Column="e" | || = ||
column BackgroundColor="Navy" /> N g y

</Grid>

€D xamarin University

Span specification

% Apply RowSpan and ColumnSpan to each child as needed

<Grid> 0 ;

<Grid.RowDefinitions> 7 ; N
<RowDefinition /> | i
<RowDefinition /> 5
<RowDefinition />
</Grid.RowDefinitions> | .| .
<Grid.ColumnDefinitions>
<ColumnDefinition /> 1

<ColumnDefinition />
</Grid.ColumnDefinitions>

?
Specﬁy <BoxView Grid.Row="1" Grid.Column="0"
) Gr\id.columnspan=n2n \ j
Span BackgroundColor="Navy" /> ; g '

</Grid>

€D xamarin University

Cell and span defaults

% Cell locations default to 0 and spans default to 1

<Grid>
<Grid.RowDefinitions>
<RowDefinition />
<RowDefinition /> 0
<RowDefinition />
</Grid.RowDefinitions>
<Grid.ColumnDefinitions>]
<ColumnDefinition /> :
<ColumnDefinition /> | = "mwwmwwé
</Grid.ColumnDefinitions> 5 :

Placed

in cell =—><BoxView BackgroundColor="Navy" /> | .., . é ofo
(0,0) </Grid> \ /

€D xamarin University

Layout options

% A view's horizontal and vertical layout options control how it is sized and
positioned within its grid cell (the default is Fi11)

(A
<Grid> 0 é
POSltlon <BOXVieW Horizontaloption5=llcenter." B -
within > VerticalOptions="End" 1 |
the cell BackgroundColor="Navy"
WidthRequeSt="5@" -
HeightRequest="50" /> 2

</Grid>

€D xamarin University

Grid child spacing

% Grid's RowSpacing and ColumnSpacing properties separate the
children (they both default to 6) =

<Grid RowSpacing="30" ColumnSpacing="10">
<BoxView Color="Silver" Grid.Row="0" Grid.Column="0" />

<BoxView Color="Blue" Grid.Row="0" Grid.Column="1" />

<BoxView Color="Black" Grid.Row="1" Grid.Column="0" />

<BoxView Color="Gray" Grid.Row="1" Grid.Column="1" />
</Grid>

Row spacing—

Column spacing

€D xamarin University

Grid Children

% Grid redefines its Children to use a custom list that provides several
overloaded Add methods

public partial class Grid : Layout<View>

{

public new IGridList<View> Children { get { ... } }

) 1

| |
This property hides Can specify row/column

the inherited one when adding children

€D xamarin University

Add children programmatically

% IGridList provides several Add methods that are more specialized
than typically found in a list

var grid = new Grid();
int row, column;

grid.Children.Add(label, column, row);

grid.Children.Add(button, column, column+l, row, row+2);

Yields a Yields a
ColumnSpan RowSpan
of 1 of 2

€D xamarin University

Auto-generated rows/columns

% Grid will automatically generate equal-sized rows/columns based on
the position of the children you add

<Grid>
<Button Grid.Row="1" Grid.Column="1" Text="O0K" />
<Button Grid.Row="2" Grid.Column="0" Text="Cancel" />
</Grid> T T
| |
Maximum index is 2 so Maximum index is 1 so

the grid will have 3 rows the grid will have 2 columns

Individual Exercise

Use Grid to build a Ul

Xamarin
@_} University

O

S\ ‘SF;‘E

D e B\
\ \ A
N
\ \
\ ;«.

Specify grid row and column sizes

Summary
Add children to grid cells

1
2.

Scroll a layout with ScrollView

Xamarin
@ University

Tasks

1.

(@)
=
O

[

)

)
O
O

O

O
]

=

)
o
>
l
l

@)

(-

o
n

)

%)
D)

-
@)
i
)
)
=
O
O
|-
)
(Vg)]
)
£
44—
44—
(D)
W

2.

€D xamarin University

What is ScrollView?

% ScrollView adds scrolling to a single piece of content; the content can
be an individual view or a layout container

How to use ScrollView

€D xamarin University

% Wrap a ScrollView around a single element to add scrolling

<ScrollView>
<StackLayout>
<BoxView Color="Silver" HeightRequest="100"
<BoxView Color="Blue" HeightRequest="200"
<BoxView Color="Gray" HeightRequest="300"
<BoxView Color="Navy" HeightRequest="200"
</StackLayout>
</ScrollView>

/>
/>
/>
/>

. Scroll

indicator

€D Xamarin University

ScrollView orientation

% ScrollView lets you control the scroll direction: Vertical (the
default), Horizontal, or Both

<ScrollView Orientation="Both">
<Image Source="monkey.jpg"
HeightRequest="1000"
WidthRequest="1000" />
</ScrollView>

Image is Iargér Vertical indicator

than its container

Horizontal indicator

€D xamarin University

Do not nest scrolling views

% Generally, do not nest ScrollViews or a ListView in a ScrollView,
it often creates non-intuitive behavior

Can scroll = e
S 1 1V . monocle th e e ntl re monodroid
< cro lew > | . monofilament
<StackLayout> —— ' ScrollView menogram
monodroid
< La bel TeXt= " P r‘e-FiX " / > monofilament - mono‘hydrate
- n monologue
<Entry x:Name="prefix" /> menegram N | onome gl
<ListView x:Name="listView" /> | ™" , mononucleosis
</StackLayout> :m:g:el <—Can scroll oncpoly
i | . monoprice
< / S cro l 1V1 ew> mononucleosis _ J u St th e S
monopol . °
mono:ri:e L 1 S tV 1 eW monosyllabic
rereret CO nte nt monotouch

monosyllabic

Summary

(@)
=
O

[

)

)
O
S

O

O
]

=

)
o
>
l
l

@)

(-

o
n

)

%)
D)

-
@)
i
)
)
=
O
O
|-
)
(Vg)]
)
£
44—
44—
(D)
W

1.

2.

Thank You!

Please complete the class survey in your profile:
universityxamarin.com/profile

= Microsoft

