
Download class materials from 

university.xamarin.com

XAML in Xamarin.Forms

XAM130



Information in this document is subject to change without notice. The example companies, 

organizations, products, people, and events depicted herein are fictitious. No association with 

any real company, organization, product, person or event is intended or should be inferred. 

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other 

intellectual property rights covering subject matter in this document. Except as expressly 

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document 

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2018 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual 

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other 

countries.

Other product and company names herein may be the trademarks of their respective owners.



1. Examine XAML syntax

2. Add Behavior to XAML-based 

pages

3. Explore XAML capabilities

Objectives



Examine XAML syntax



❖ Choose between XAML and C# to 

define your UI

❖ Define a UI in Xamarin.Forms using 

XAML

Tasks



❖ Creating UI in code has some 

disadvantages

▪ Significant portion of code-

behind is UI setup and layout

▪ Mixing UI and behavior in one 

file makes design and behavior 

harder to understand / evolve

▪ Prohibits use of a UI designer 

because a developer is needed 

for any UI change

Motivation



❖ HTML has taught us that markup 

languages are a great way to define 

user interfaces because they are:

▪ Toolable

▪ Human readable

▪ Extensible

Advantages of markup



❖ Extensible Application Markup Language (XAML) is a markup language 

created by Microsoft specifically to describe UI

What is XAML?



XAML benefits

XAML

Potential for 
division of labor

Separation of UI
from Behavior



❖ Xamarin.Forms conforms to the XAML 2009 specification; it differs from 

traditional Microsoft XAML mainly in the controls and layout containers

Microsoft XAML vs. Xamarin.Forms

Xamarin.FormsMicrosoft XAML (WinRT)



Feature Supported in Xamarin.Forms

XAML 2009 compliance ✓

Shapes (Rectangle, Ellipse, Path, etc.) BoxView

Resources, Styles and Triggers ✓

Data binding ✓ *not all features

Data templates ✓

Control templates Custom renderers

Render Transforms ✓

Animations Code-only

Custom XAML behaviors ✓

Custom markup extensions ✓

Value converters ✓



❖ There are two Item Templates available to add XAML content

Adding a XAML Page

ContentView is a composite

control (smaller than a page)

ContentPage is an

entire screen of content



❖ Add XAML content to the platform-independent project in your 

application – this is shared UI and code for all your target platforms

Where do the XAML pages go?

XAML

pages

go here



XAML-page structure

❖ XAML pages have two related files that work together to define the class

XAML file (UI)

C# file (behavior)

Disclosure arrow collapses the C# file and 

indicates these files go together



❖ Our goal is to build the UI for a “Phoneword“ app that translates a text 

phone number to its numeric equivalent

Example: creating a XAML UI

Label

Entry

Button

Button

Arranged

using a

StackLayout



❖ XAML is used to construct object graphs, in this case a visual Page

Describing a screen in XAML

<?xml version="1.0" encoding="UTF-8" ?>
<ContentPage ...>

<StackLayout Padding="20" Spacing="10">
<Label Text="Enter a Phoneword:" />
<Entry Placeholder="Number" />
<Button Text="Translate" />
<Button Text="Call" IsEnabled="False" />

</StackLayout>
</ContentPage>

XML based: case sensitive, open tags must be closed, etc.



❖ XAML is used to construct object graphs, in this case a visual Page

Describing a screen in XAML

<?xml version="1.0" encoding="UTF-8" ?>
<ContentPage ...>

<StackLayout Padding="20" Spacing="10">
<Label Text="Enter a Phoneword:" />
<Entry Placeholder="Number" />
<Button Text="Translate" />
<Button Text="Call" IsEnabled="False" />

</StackLayout>
</ContentPage>

Element tags 

create objects



❖ XAML is used to construct object graphs, in this case a visual Page

Describing a screen in XAML

<?xml version="1.0" encoding="UTF-8" ?>
<ContentPage ...>

<StackLayout Padding="20" Spacing="10">
<Label Text="Enter a Phoneword:" />
<Entry Placeholder="Number" />
<Button Text="Translate" />
<Button Text="Call" IsEnabled="False" />

</StackLayout>
</ContentPage>

Attributes set 

properties or 

events



❖ XAML is used to construct object graphs, in this case a visual Page

Describing a screen in XAML

<?xml version="1.0" encoding="UTF-8" ?>
<ContentPage ...>

<StackLayout Padding="20" Spacing="10">
<Label Text="Enter a Phoneword:" />
<Entry Placeholder="Number" />
<Button Text="Translate" />
<Button Text="Call" IsEnabled="False" />

</StackLayout>
</ContentPage>

Child nodes 

used to 

establish 

relationship



❖ XAML files are stored as embedded resources and have a special build 

type of MSBuild:UpdateDesignTimeXaml

XAML build type



❖ XAML and code behind files are tied together

XAML + Code Behind

namespace Phoneword
{

public partial class MainPage : ContentPage
{
...

}
}

<?xml version="1.0" encoding="UTF-8" ?>
<ContentPage x:Class="Phoneword.MainPage" ...>

x:Class Identifies the 

full name of the class 

defined in the code 

behind file



❖ Code behind constructor has call to InitializeComponent which is 

responsible for loading the XAML and creating the objects

XAML initialization

public partial class MainPage : ContentPage
{

public MainPage ()
{

InitializeComponent ();
}

}

implementation of 

method 

generated by 

XAML compiler as 

a result of the 

x:Class tag –

added to hidden 

file (same partial 

class)



Creating a XAML-based application

Demonstration



❖ XML attributes only allow for string values – works fine for intrinsic types

Property Conversions

<Label Text="This is a Label" IsVisible="True" Opacity="0.75"
FontAttributes="Bold,Italic" FontSize="Large"
Margin="5,20,5,0" TextColor="#fffc0d34" />

Text is a string which is just set directly



❖ XML attributes only allow for string values – works fine for intrinsic types

Property Conversions

<Label Text="This is a Label" IsVisible="True" Opacity="0.75"
FontAttributes="Bold,Italic" FontSize="Large"
Margin="5,20,5,0" TextColor="#fffc0d34" />

IsVisible is a bool which is converted from 

the value using Boolean.TryParse



❖ XML attributes only allow for string values – works fine for intrinsic types

Property Conversions

<Label Text="This is a Label" IsVisible="True" Opacity="0.75"
FontAttributes="Bold,Italic" FontSize="Large"
Margin="5,20,5,0" TextColor="#fffc0d34" />

Opacity is a double which is converted from 

the value using Double.TryParse



❖ XML attributes only allow for string values – works fine for intrinsic types

Property Conversions

<Label Text="This is a Label" IsVisible="True" Opacity="0.75"
FontAttributes="Bold,Italic" FontSize="Large"
Margin="5,20,5,0" TextColor="#fffc0d34" />

Enumerations are parsed with Enum.TryParse and 

support [Flags] with comma-separated values



❖ XML attributes only allow for string values – works fine for intrinsic types

Property Conversions

<Label Text="This is a Label" IsVisible="True" Opacity="0.75"
FontAttributes="Bold,Italic" FontSize="Large"
Margin="5,20,5,0" TextColor="#fffc0d34" />

[TypeConverter(typeof(ThicknessTypeConverter))]
public struct Thickness
{

...
}



❖ XML attributes only allow for string values – works fine for intrinsic types

Property Conversions

<Label Text="This is a Label" IsVisible="True" Opacity="0.75"
FontAttributes="Bold,Italic" FontSize="Large"
Margin="5,20,5,0" TextColor="#fffc0d34" />

Margin is of type Thickness



❖ XML attributes only allow for string values – works fine for intrinsic types

Property Conversions

<Label Text="This is a Label" IsVisible="True" Opacity="0.75"
FontAttributes="Bold,Italic" FontSize="Large"
Margin="5,20,5,0" TextColor="#fffc0d34" />

Colors can be specified as a known 

value (e.g. "Red", "Green", …) or as a 

hex value (RGB or aRGB)



❖ When a more complex object needs 

to be created and assigned, you can 

use the Property Element syntax

❖ This changes the style to use an 

element tag (create-an-object) as 

part of the assignment

Setting Complex Properties

<BoxView Color="Transparent">
<BoxView.GestureRecognizers>

<TapGestureRecognizer
NumberOfTapsRequired="2"
... />

</BoxView.GestureRecognizers>
</BoxView>

Property value is set as a child tag of the 

<Type.PropertyName> element



❖ Attached Properties provide 

runtime "attached" data for a visual 

element

❖ Used by layout containers to 

provide container-specific values on 

each child

Setting Attached Properties

<Grid>
<Label Text="Position" />
<Entry Grid.Column="1" />
</Grid>

Set in XAML with 

OwnerType.Property="Value"
form, can also use property-element 

syntax for more complex values



❖ Some types have a default property 

which is set when child content is 

added to the element

❖ This is the Content Property and is 

identified through a 

[ContentAttribute] applied to 

the class

Content Properties
<ContentPage ...>
<Label>

This is the Text
</Label>
</ContentPage>

<ContentPage ...>
<ContentPage.Content>
<Label>
<Label.Text>
This is the Text

</Label.Text>
</Label>

</ContentPage.Content>
</ContentPage>

These create 

the same UI



❖ XAML creates objects when it encounters an element tag, XML 

namespaces are used to correlate .NET types to tags

Identifying Types

<ContentPage ...
xmlns="http://xamarin.com/schemas/2014/forms"
xmlns:x="http://schemas.microsoft.com/winfx/2009/xaml">

<StackLayout ... />

<ContentPage>

Default namespace includes most of the Xamarin.Forms types you use

x: namespace includes XAML types and known CLR types (Int32, String, etc.)



❖ XAML can create any public object, including ones with parameterized 

constructors – you just need to tell it where the type lives

Custom Types

<scg:List x:TypeArguments="x:String"
xmlns:scg="clr-namespace:System.Collections.Generic;assembly=mscorlib">

<x:String>One</x:String>
<x:String>Two</x:String>
<x:String>Three</x:String>

</scg:List>

Must supply the namespace, and possibly the assembly, the type is defined in

xmlns definition can be placed on a single element, or a parent element to use 

with any children



Create a XAML-based version of Calculator

Individual Exercise



Add Behavior to 

XAML-based pages



❖ Access XAML defined elements in 

the associated code-behind 

❖ Handle events on XAML defined 

views

Tasks



❖ Use x:Name to assign field name

▪ allows you to reference element 

in XAML and code behind

❖ Adds a private field to the XAML-

generated partial class (.g.cs)

❖ Name must conform to C# naming 

conventions and be unique in the 

file

Naming Elements in XAML

<Entry x:Name="PhoneNumber"
Placeholder="Number" />

public partial class MainPage : ContentPage
{
private Entry PhoneNumber;

private void InitializeComponent() {
this.LoadFromXaml(typeof(MainPage));
PhoneNumber = this.FindByName<Entry>(

"PhoneNumber");
}

}

MainPage.xaml

MainPage.xaml.g.cs



❖ Can work with named elements as if you defined them in code, but 

keep in mind the field is not set until after InitializeComponent is 

called

Working with named elements

public partial class MainPage : ContentPage
{

public MainPage () {
InitializeComponent ();
PhoneNumber.TextChanged += OnTextChanged;

}

void OnTextChanged(object sender, TextChangedEventArgs e) {
...

}
}

Can wire up 

events, set 

properties, 

even add new 

elements to 

layout



❖ Generated field is always private, but Page owner can wrap in a public 

property to allow external access

Sharing elements

public partial class MainPage : ContentPage
{

public Entry PhoneNumberEntry
{ 

get { return this.PhoneNumber; }
}
...

}

should not provide a setter – replacing the field's value will not change 

the actual element on the screen



❖ Can also wire up events in XAML – event handler must be defined in the 

code behind file and have proper signature or it’s a runtime failure

Handling events in XAML

public partial class MainPage : ContentPage
{

...
void OnTextChanged(object sender, TextChangedEventArgs e) {

...
}

}

<Entry Placeholder="Number" TextChanged="OnTextChanged" />



❖ Many developers prefer to wire up all events in code behind by naming 

the XAML elements and adding event handlers in code

▪ Keeps the UI layer "pure" by pushing all behavior + management 

into the code behind

▪ Names are validated at compile time, but event handlers are not

▪ Easier to see how logic is wired up

❖ Pick the approach that works for your team / preference

Handling events in code behind



Flash Quiz



① Putting an x:Name tag onto an element _________. (Select all that apply)

a) Creates a private field in the associated code behind file

b) Creates a protected field in the associated code behind file

c) Makes the element accessible to other things in XAML

d) Makes the element accessible in the code behind after 

InitializeComponent returns

Flash Quiz



① Putting an x:Name tag onto an element _________. (Select all that apply)

a) Creates a private field in the associated code behind file

b) Creates a protected field in the associated code behind file

c) Makes the element accessible to other things in XAML

d) Makes the element accessible in the code behind after 

InitializeComponent returns

Flash Quiz



② Event Handlers in code behind that are wired up in XAML must be 

public

a) True

b) False

Flash Quiz



② Event Handlers in code behind that are wired up in XAML must be 

public

a) True

b) False

Flash Quiz



Adding Behavior to XAML Calculator

Individual Exercise



Explore XAML capabilities



❖ Using device-specific values to 

define your app’s UI

❖ Use Markup Extensions in XAML

❖ Using ContentView to share XAML 

across multiple Pages

❖ Compile XAML to improve 

performance

Tasks



❖ XAML is a static (compile-time) definition of the UI; can provide different 

values for each platform just like we do in code with Device.OnPlatform

Using device-specific values

<StackLayout Spacing="10">
<StackLayout.Padding>

<OnPlatform x:TypeArguments="Thickness"
iOS="0,20,0,0" Android="0" WinPhone="0" />

</StackLayout.Padding>
...

</StackLayout>

x:TypeArguments used for generic instantiation

can then supply different platform-specific value for property



❖ XAML defines a way to set properties to values known at runtime called 

markup extensions, these conform to the IMarkupExtension interface

Using runtime values

public interface IMarkupExtension
{

object ProvideValue(IServiceProvider serviceProvider);
}

method is called during the XAML load process to retrieve a runtime value 

and apply it to the property



❖ Markup Extensions are identified by "{extension_here}" curly braces

Using Markup Extensions

<StackLayout BindingContext="{Binding Details}">
<Label Text="{}{Want a Curly Brace Here!}" />
...

</StackLayout>

parser expects to find a class named BindingExtension that implements 

IMarkupExtension when it encounters the curly brace as the first character

literal curly braces need to be escaped properly to avoid a parser error



❖ A very useful markup extension is x:Static which lets you get the 

value of public static fields or properties

Reading static properties

public static class Constants
{

public static string Title = "Hello, Forms";
public static Thickness Padding = new Thickness(5, Device.OnPlatform(20, 0, 0), 5, 0);
public static Color TextColor = Color.Yellow;

}

<ContentPage ... Padding="{x:Static me:Constants.Padding}">
<Label Text="{x:Static me:Constants.Title}"

TextColor="{x:Static me:Constants.TextColor}" />
</ContentPage>



❖ Use resource values with {StaticResource} and {DynamicResource}

❖ Supply a null value with {x:Null}

❖ Lookup a Type with {x:Type}

❖ Create an array with {x:Array}

❖ Create data bindings with {Binding}

Other built-in Markup Extensions

<ListView SelectedItem="{x:Null}">
<ListView.ItemsSource>

<x:Array Type="{x:Type x:Int32}">
<x:Int32>10</x:Int32>
<x:Int32>20</x:Int32>
<x:Int32>30</x:Int32>

</x:Array>
</ListView.ItemsSource>

</ListView>



❖ Can be useful to split XAML into 

different files

▪ Reuse useful UI pieces

▪ Refactor large pages

❖ ContentView allows for this

▪ Similar to Android Fragments

▪ … or User Controls in Windows

Sharing XAML fragments



❖ ContentView combines a piece of XAML with code behind behavior -
just like ContentPage, can name elements, wire up events, etc.

ContentView structure

Can be placed into a separate 

class library if desired



❖ ContentView is not displayed on it's own - must be added to a Page

Using a ContentView

ContentView can expose it's own properties and events to provide 

customization or "hooks" into the logic



Flash Quiz



① To specify a platform-specific value in XAML you use _______.

a) Device<T>

b) OnPlatform<T>

c) Platform<T>

d) x:Platform<T>

Flash Quiz



① To specify a platform-specific value in XAML you use _______.

a) Device<T>

b) OnPlatform<T>

c) Platform<T>

d) x:Platform<T>

Flash Quiz



② To share a value you can use ______ (select all that apply).

a) Resource Dictionary with {StaticResource}

b) Resource Dictionary with {x:Static}

c) Static properties in code and {x:Static}

d) Static properties in code and {StaticResource}

Flash Quiz



② To share a value you can use ______ (select all that apply).

a) Resource Dictionary with {StaticResource}

b) Resource Dictionary with {x:Static}

c) Static properties in code and {x:Static}

d) Static properties in code and {StaticResource}

Flash Quiz



③ Which one of these is not a system-provided markup extension?

a) {StaticResource}

b) {x:Null}

c) {ImageResource}

d) {x:Type}

Flash Quiz



③ Which one of these is not a system-provided markup extension?

a) {StaticResource}

b) {x:Null}

c) {ImageResource}

d) {x:Type}

Flash Quiz



④ To have a property value be set to "{Text" you would type: _______.

a) "\{Text"

b) "{{Text"

c) "{Text"

d) "{}{Text"

Flash Quiz



④ To have a property value be set to "{Text" you would type: _______.

a) "\{Text"

b) "{{Text"

c) "{Text"

d) "{}{Text"

Flash Quiz



❖ By default, your XAML files are included as a plain-text resource in the 

generated assembly which is parsed at runtime to generate the page

XAML resources

private void InitializeComponent()
{

this.LoadFromXaml(typeof(MainPage));
}

This Page method looks up the embedded resource by name, parses 

it, and creates each object found; it returns the root created object



❖ XAML can be optionally compiled 

to intermediate language (IL)

▪ Provides compile-time 

validation of your XAML files

▪ Reduces the load time for pages

▪ Reduces the assembly size by 

removing text-based .xaml files

Compiling XAML



❖ XAMLC (the XAML compiler) is disabled by default to ensure backwards 

compatibility; can be enabled through a .NET attribute

Enabling XAMLC

using Xamarin.Forms.Xaml;

[assembly: XamlCompilationAttribute(
XamlCompilationOptions.Compile)]

Can enable the compiler for all XAML files in the assembly



❖ XAMLC (the XAML compiler) is disabled by default to ensure backwards 

compatibility; can be enabled through a .NET attribute

Enabling XAMLC

using Xamarin.Forms.Xaml;

[XamlCompilationAttribute(XamlCompilationOptions.Compile)]
public partial class MainPage : ContentPage {

… or on a specific XAML-based class



❖ Attribute presence causes MSBuild command to be run which parses the 

XAML and generates InitializeComponent to create the page in code

What does XAMLC do?

private void InitializeComponent()
{

Label label = new Label();
StackLayout stackLayout = new StackLayout();
stackLayout.SetValue(VisualElement.BackgroundColorProperty,

new ColorTypeConverter().ConvertFrom("Red"));
stackLayout.SetValue(Layout.PaddingProperty,

new ThicknessTypeConverter().ConvertFrom("10"));
stackLayout.SetValue(StackLayout.SpacingProperty, 5);
label.SetValue(Label.TextProperty, "Hello, Forms");
stackLayout.Children.Add(label);
...
this.Content = stackLayout;

}



❖ Attribute also lets you disable XAMLC for a specific class

Disabling XAMLC

using Xamarin.Forms.Xaml;

[XamlCompilationAttribute(XamlCompilationOptions.Skip)]
public partial class DetailsPage : ContentPage {

Specify Skip to turn off compiler for this 

specific page; goes back to using 
LoadFromXaml



Cleanup the XAML code and tailor the UI to the platform

Individual Exercise



Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile


