
Download class materials from

university.xamarin.com

Introduction to

Xamarin.Forms

XAM120

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2018 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Create a single screen

cross-platform application

2. Arrange the UI using Layouts

3. Use platform-specific features in

shared code

Objectives

Create a single screen

cross-platform application

❖ Compare traditional development to

Xamarin.Forms

❖ Understand Xamarin.Forms project

structure

❖ Use application components

❖ Create a Xamarin.Forms app

Tasks

❖ Traditional Xamarin approach allows for shared business logic and non-

sharable platform-specific code for the UI layer

Xamarin.iOS and Xamarin.Android

iOS

C# UI

Shared C# business logic

Android

C# UI

Windows

C# UI

Xamarin.iOS and Xamarin.Android

❖ Xamarin.Forms allows you to describe the UI once using a shared set of

elements which create a native UI at runtime

Xamarin.Forms

iOS

C# UI

Shared C# business logic

Android

C# UI

Windows

C# UI Shared C# UI

Shared C# business logic

Xamarin.iOS and Xamarin.Android Xamarin.Forms

❖ Xamarin.Forms is a cross-

platform UI framework to

create mobile apps for:

▪ Android 4.0+

▪ iOS 8.0+

▪ Windows 10

What is Xamarin.Forms?

Flexible
Layout

Standard
Controls

Custom
Controls

Data
Binding
Engine

XAML

Navigation

Styles +

Triggers

Maps

Xamarin.Forms platform support

iOS

Shared C# UI

Shared C# logic

mac

❖ Xamarin.Forms supports a broad selection of mobile and desktop

platforms and UI frameworks

❖ Visual Studio for Windows includes built-in project templates for

Xamarin.Forms applications

Creating a Xamarin.Forms App [Windows]

Available under

Cross-Platform

❖ Visual Studio for Mac includes built-in project templates for

Xamarin.Forms applications

Creating a Xamarin.Forms App [Mac]

After selecting

your template,

a project wizard

walks through

the available

options

Project Structure

❖ The Xamarin Cross Platform App project template creates several

related projects

Platform-specific

projects act as

"host" to create

native application

PCL or SAP used

to hold shared

code that defines

UI and logic

❖ Most of your code will go into the PCL used for shared logic + UI

Project Structure - PCL

Default template creates

an App class which

decides the initial screen

for the application

❖ Platform-specific projects use the

shared code (PCL or SAP), but not

the other way around

❖ Xamarin.Forms defines the UI and

behavior in the PCL or SAP (shared)

and then calls it from each

platform-specific project

Project Structure - Dependencies

Shared

Code

iOS

project

Android

project

Windows

project

❖ Should update Xamarin.Forms Nuget package when starting a new project

Xamarin.Forms updates [Windows]

❖ Should update Xamarin.Forms Nuget package when starting a new project

Xamarin.Forms updates [Mac]

Creating a Xamarin.Forms application

Demonstration

❖ Xamarin.Forms applications have two required components which are

provided by the template

Xamarin.Forms app anatomy

Application Page(s)

Provides initialization for

the application

Represents a single

screen to display

❖ Application class provides a

singleton which manages:

▪ Lifecycle methods

▪ Modal navigation notifications

▪ Currently displayed page

▪ Application state persistence

❖ New projects will have a derived

implementation named App

Xamarin.Forms Application

Note: Windows apps also have an Application class, make sure not to confuse them!

❖ Application class provides lifecycle methods which can

be used to manage persistence and refresh your data

Xamarin.Forms Application

public class App : Application
{ ...

protected override void OnStart() {}
protected override void OnSleep() {}
protected override void OnResume() {}

}

Use OnStart to initialize

and/or reload your app's data

Use OnSleep to save changes

or persist information

Use OnResume to refresh

your displayed data

❖ Application class also includes a stringobject
property bag which is persisted between app launches

Persisting information

// Save off username in global property bag
Application.Current.Properties["username"] = username.Text;

// Restore the username before it is displayed
if (Application.Current.Properties.ContainsKey("username")) {

var uname = Application.Current.Properties["username"] as string
?? "";

username.Text = uname;
}

❖ Application UI is defined in terms of pages and views

Creating the application UI

Page represents a single

screen displayed in the app

OK

Name:Views are the UI

controls the user

interacts with

❖ Page is an abstract class used to define a single screen of content

▪ derived types provide specific visualization / behavior

Pages

Content

Displays a single

piece of content

(visual thing)

❖ Page is an abstract class used to define a single screen of content

▪ derived types provide specific visualization / behavior

Pages

Content Master Detail

Manages two

panes of

information

❖ Page is an abstract class used to define a single screen of content

▪ derived types provide specific visualization / behavior

Pages

Content Master Detail Navigation

Manages a stack

of pages with

navigation bar

❖ Page is an abstract class used to define a single screen of content

▪ derived types provide specific visualization / behavior

Pages

Content Master Detail Navigation Tabbed

Page that

navigates

between children

using tab bar

Adding a new ContentPage to a Xamarin.Forms application

Demonstration

❖ View is the base class for all visual controls, most

standard controls are present

Views

Label Image SearchBar

Entry ProgressBar ActivityIndicator

Button Slider OpenGLView

Editor Stepper WebView

DatePicker Switch ListView

BoxView TimePicker

Frame Picker

❖ Button provides a clickable surface with text

Views - Button

OK

var okButton = new Button() {
Text = "OK"

};
okButton.Clicked += OnClick;

void OnClick(object sender, EventArgs e) {
...

}

❖ Use a Label to display read-only text blocks

Views - Label

Hello, Forms!

var hello = new Label() {
Text = "Hello, Forms!",
HorizontalTextAlignment = TextAlignment.Center,
TextColor = Color.Blue,
FontFamily = "Arial"

};

❖ Use an Entry control if you want the user to provide input with an on-

screen or hardware keyboard

Views - Entry

Hello

var edit = new Entry() {
Keyboard = Keyboard.Text,
PlaceholderText = "Enter Text"

};

❖ Platform defines a renderer for each view that turns each view into the

appropriate platform-specific control

Rendering views

var button = new Button {
Text = "Click Me!"

};

UI defined using a Xamarin.Forms Button

Android.Widget.Button

UIKit.UIButton

Windows.UI.Xaml.Controls.Button

❖ Views utilize properties to adjust visual appearance and behavior

Visual adjustments

var numEntry = new Entry {
Placeholder = "Enter Number",
Keyboard = Keyboard.Numeric

};

var callButton = new Button {
Text = "Call",
BackgroundColor = Color.Blue,
TextColor = Color.White

};

❖ Controls use events to provide interaction behavior, should be very

familiar model for most .NET developers

Providing Behavior

var numEntry = new Entry { ... };
numEntry.TextChanged += OnTextChanged;
...

void OnTextChanged (object sender, string newValue)
{

...
}

You can use traditional delegates, anonymous methods, or lambdas to handle events

Creating our first Xamarin.Forms application

Group Exercise

Flash Quiz

① Xamarin.Forms creates a single binary that can be deployed to Android,

iOS or Windows

a) True

b) False

Flash Quiz

① Xamarin.Forms creates a single binary that can be deployed to Android,

iOS or Windows

a) True

b) False

Flash Quiz

② You must call _________ before using Xamarin.Forms

a) Forms.Initialize

b) Forms.Init

c) Forms.Setup

d) No setup call necessary

Flash Quiz

② You must call _________ before using Xamarin.Forms

a) Forms.Initialize

b) Forms.Init

c) Forms.Setup

d) No setup call necessary

Flash Quiz

③ To supply the initial page for the application, you must set the _______

property.

a) Application.FirstPage

b) Application.PrimaryPage

c) Application.MainPage

d) Application.MainView

Flash Quiz

③ To supply the initial page for the application, you must set the _______

property.

a) Application.FirstPage

b) Application.PrimaryPage

c) Application.MainPage

d) Application.MainView

Flash Quiz

❖ Compare traditional development to

Xamarin.Forms

❖ Understand Xamarin.Forms project

structure

❖ Use application components

❖ Create a Xamarin.Forms app

Summary

Arrange the UI using Layouts

❖ Choose a layout container to

structure your UI

❖ Add views to a layout container

Tasks

❖ Rather than specifying positions

with coordinates (pixels, dips, etc.),

you use layout containers to

control how views are positioned

relative to each other

❖ This provides for a more adaptive

layout which is not as sensitive to

dimensions and resolutions

Organizing content

For example, "stacking" views on top of each

other with some spacing between them

❖ Layout Containers organize child elements based on specific rules

Layout containers

StackLayout

StackLayout places children

top-to-bottom (default) or left-to-

right based on Orientation
property setting

❖ Layout Containers organize child elements based on specific rules

Layout containers

StackLayout AbsoluteLayout

AbsoluteLayout places children

in absolute requested positions

based on anchors and bounds

❖ Layout Containers organize child elements based on specific rules

Layout containers

StackLayout Absolute

Layout

Relative

Layout

RelativeLayout
uses constraints to

position the children

❖ Layout Containers organize child elements based on specific rules

Layout containers

StackLayout Absolute

Layout

Relative

Layout

Grid

Grid places

children in defined

rows and columns

Layout containers

StackLayout Absolute

Layout

Relative

Layout

Grid ScrollView

❖ Layout Containers organize child elements based on specific rules

ScrollView scrolls a

single piece of content

(which is normally a

layout container)

❖ Layout containers have a Children collection property which is used to

hold the views that will be organized by the container

Adding views to layout containers

Label label = new Label { Text = "Enter Your Name" };
Entry nameEntry = new Entry();

StackLayout layout = new StackLayout();
layout.Children.Add(label);
layout.Children.Add(nameEntry);

this.Content = layout;

Views are laid out and rendered in the order they appear in the collection

❖ StackLayout is used to create typical form style layout

Working with StackLayout

…. Entry …

Label

Button

Entry

"stacks" the child views top-to-bottom

(vertical) [default]

… or left-to-right (horizontal)

The Orientation property can be set to either Horizontal or Vertical to control

which direction the child views are stacked in

❖ StackLayout is used to create typical form style layout, Orientation
property decides the direction that children are stacked

Working with StackLayout

var layout = new StackLayout {
Orientation = StackOrientation.Vertical

};

layout.Children.Add(new Label { Text = "Enter your name:" });
layout.Children.Add(new Entry());
layout.Children.Add(new Button { Text = "OK" });

❖ Grid is a layout panel used to create rows and columns of views,

children identify specific column, row and span

Working with Grid

Column = 1, Row = 1

Column = 1, Row = 0

Column 0 Column 1

Row 0

Row 1

Row 2 Column = 0, Row = 2, Column Span = 2

Column = 0, Row = 0,

Row Span = 2

❖ Children in Grid must specify the layout properties, or they will default

to the first column/row

Adding items to a Grid

Label label = new Label { Text = "Enter Your Name" };

Grid layout = new Grid();
layout.Children.Add(label);

Grid.SetColumn(label, 1);
Grid.SetRow(label, 1);
Grid.SetColumnSpan(label, 2);
Grid.SetRowSpan(label, 1);

Use static methods

defined on Grid to set

layout properties

❖ Children in Grid must specify the layout properties, or they will default

to the first column/row

Adding items to a Grid

Grid layout = new Grid();

...

layout.Children.Add(label, 0, 1); // Left=0 and Top=1
layout.Children.Add(button, 0, 2, 2, 3); // L=0, R=2, T=2, B=3

Can also specify row/column as Left/Right/Top/Bottom values to Add method

❖ Can influence the determined shape and size of the columns and rows

Controlling the shape of the grid

Grid layout = new Grid();

layout.RowDefinitions.Add(new RowDefinition {
Height = new GridLength(100, GridUnitType.Absolute) // 100px

});

layout.RowDefinitions.Add(new RowDefinition {
Height = new GridLength(1, GridUnitType.Auto) // "Auto" size

});

layout.ColumnDefinitions.Add(new ColumnDefinition {
Width = new GridLength(1, GridUnitType.Star) // "Star" size

});

❖ RelativeLayout allows you to position child views relative to two

other views, or to the panel itself using constraint-based rules

Working with RelativeLayout

var layout = new RelativeLayout();
...
layout.Children.Add(label,

Constraint.RelativeToParent(
parent => (0.5 * parent.Width) - 25), // X

Constraint.RelativeToView(button,
(parent, sibling) => sibling.Y + 5), // Y

Constraint.Constant(50), // Width
Constraint.Constant(50)); // Height

❖ AbsoluteLayout positions and sizes children by absolute values

through either a coordinate (where the view determines it's own size), or

a bounding box

Working with AbsoluteLayout

var layout = new AbsoluteLayout();
...
// Can do absolute positions by coordinate point
layout.Children.Add(label1, new Point(100, 100));

// Or use a specific bounding box
layout.Children.Add(label2, new Rectangle(20, 20, 100, 25));

❖ AbsoluteLayout can also position and size children proportional to its

own size using coordinates based on a 1x1 unit square which represents

a percentage of the container's size

Working with AbsoluteLayout

(0,0)

(0.5,0.5)

(1,1)

(1,0)

(0,1)

❖ AbsoluteLayout can also position and size children proportional to its

own size using coordinates based on a 1x1 unit square which represents

a percentage of the container's size

Working with AbsoluteLayout

var layout = new AbsoluteLayout();
...
// Center at the bottom of the container, take up ½ the space
layout.Children.Add(bottomLabel, new Rectangle (.5, 1, .5, .1),

AbsoluteLayoutFlags.All);

Here we center the label (.5) at the bottom of the container (1)

and take up ½ the space (.5) width and 1/10 the space height (.1)

❖ AbsoluteLayout can also position and size children proportional to its

own size using coordinates based on a 1x1 unit square which represents

a percentage of the container's size

Working with AbsoluteLayout

var layout = new AbsoluteLayout();
...
// Stretch image across entire container
layout.Children.Add(fillImage, new Rectangle (0, 0, 1, 1),

AbsoluteLayoutFlags.All);

Here we "fill" the container with an image

[0,0] – [1,1]

❖ Can use either Add method, or specific static methods to control the

bounding box and layout flags for children in AbsoluteLayout – this

allows for "runtime" adjustments

Fine-tuning AbsoluteLayout

Label bottomLabel;

void MoveLabelToTopRight(object sender, EventArgs e)
{

AbsoluteLayout.SetLayoutBounds(bottomLabel,
new Rectangle (1, 0, .5, .1));

AbsoluteLayout.SetLayoutFlags (bottomLabel,
AbsoluteLayoutFlags.All);

}

❖ Use WidthRequest and HeightRequest to ask the layout panel for a

specific size for your views

Element size

Button

var button = new Button();

button.WidthRequest = 300;
button.HeightRequest = 150;

❖ Margin adds distance from an view to

adjacent views within a managed layout

View Margin

Label

Button

Overloaded constructors give you

several options, including the ability

to set a separate value on each side

Label label = ...
Button button = ...

label.Margin = new Thickness(10);
button.Margin = new Thickness(10,20);

❖ Padding adds distance between the

inside edges of a layout container and

its children (only available in layouts)

Layout Padding

View

View

View

Grid grid = ...;
grid.Padding = new Thickness(10);

❖ The Spacing property of StackLayout and

controls the distance between child elements

StackLayout Spacing

View

View

View
Stack Layout

StackLayout panel = ...;
panel.Spacing = 20;

Spacing

Creating Xamarin.Forms Phoneword

Individual Exercise

Flash Quiz

① The direction (left-to-right or top-to-bottom) a StackLayout
organizes content is controlled by which property?

a) Style

b) Direction

c) Orientation

d) LayoutDirection

Flash Quiz

① The direction (left-to-right or top-to-bottom) a StackLayout
organizes content is controlled by which property?

a) Style

b) Direction

c) Orientation

d) LayoutDirection

Flash Quiz

② Which of these controls is not available in Xamarin.Forms?

a) Button

b) DatePicker

c) ListBox

d) ListView

Flash Quiz

② Which of these controls is not available in Xamarin.Forms?

a) Button

b) DatePicker

c) ListBox

d) ListView

Flash Quiz

③ To adjust spacing between children when using the StackLayout
container we can change the ______ property on the stack layout.

a) Margin

b) Padding

c) Spacing

Flash Quiz

③ To adjust spacing between children when using the StackLayout
container we can change the ______ property on the stack layout.

a) Margin

b) Padding

c) Spacing

Flash Quiz

❖ Choose a layout container to

structure your UI

❖ Add views to a layout container

Summary

Use platform-specific features

in shared code

❖ Change the UI per-platform

❖ Use platform-specific features

❖ Use the DependencyService

Tasks

❖ Xamarin.Forms applications have two projects that work together to

provide the logic + UI for each executable

Recall: Xamarin.Forms architecture

Portable

Class Library

Platform-

Specific project
Platform-

Specific project
Platform-

Specific project

▪ shared across all platforms

▪ limited access to .NET APIs

▪ want most of our code here

▪ 1-per platform

▪ code is not shared

▪ full access to .NET APIs

▪ any platform-specific code must

be located in these projects

❖ Device.RuntimePlatform allows

your app to determine the

executing platform

Changing the UI per-platform

switch(Device.RuntimePlatform)
{

case Device.iOS:
...
break;

case Device.Android:
...
break;

case Device.UWP:
...
break;

case Device.macOS:
...
break;

}

❖ Can use the static Device class to identify the device style

Detecting the platform

if (Device.Idiom == TargetIdiom.Tablet) {
// Code for tablets only
if (Device.RuntimePlatform == Device.iOS) {

// Code for iPad only
}

}

Note that this does not allow for platform-specific code to be executed, it allows runtime

detection of the platform to execute a unique branch in your shared code

❖ Xamarin.Forms has support for dealing with a few, very common

platform-specific features

Using Platform Features

Page.DisplayAlert
to show simple alert

messages

Timer
management using

Device.StartTimer

Device.OpenUri
to launch external apps

based on a URL
scheme

❖ Xamarin.Forms has support for dealing with a few, very common

platform-specific features

Using Platform Features

UI Thread
marshaling with

Device.BeginInvoke
OnMainThread

Mapping and Location
through

Xamarin.Forms.Maps

❖ Platform features not exposed by

Xamarin.Forms can be used, but will

require some architectural design

▪ code goes into platform-specific

projects

▪ often must (somehow) use code

from your shared logic project

Other platform-specific features

Dialing the phone

would require

platform-specific code

❖ Best practice to build an abstraction implemented by the target platform

which defines the platform-specific functionality

Creating abstractions

PhoneDialerIOS

PhoneDialerDroid

PhoneDialerWin

Platform projects implement the

shared dialer interface using the

platform-specific APIs

Shared code defines IDialer interface

to represent required functionality

public interface IDialer
{

bool MakeCall(string number);
}

❖ Xamarin.Forms includes a service locator called DependencyService
which can be used to register platform-specific implementations and

then locate them through the abstraction in your shared code

Locating dependencies

1
Define an interface or abstract class in the

shared code project (PCL)

public interface IDialer
{

bool MakeCall(string number);
}

❖ Xamarin.Forms includes a service locator called DependencyService
which can be used to register platform-specific implementations and

then locate them through the abstraction in your shared code

Locating dependencies

2
Provide implementation of abstraction in

each platform-specific project

class PhoneDialerIOS : IDialer
{

public bool MakeCall(string number) {
// Implementation goes here

}
}

❖ Xamarin.Forms includes a service locator called DependencyService
which can be used to register platform-specific implementations and

then locate them through the abstraction in your shared code

Locating dependencies

3
Expose platform-specific implementation using assembly-

level attribute in platform-specific project

[assembly: Dependency(typeof(PhoneDialerIOS))]

Implementation type is supplied to

attribute as part of registration

❖ Xamarin.Forms includes a service locator called DependencyService
which can be used to register platform-specific implementations and

then locate them through the abstraction in your shared code

Locating dependencies

4
Retrieve and use the dependency anywhere using

DependencyService.Get<T> (both shared and platform

specific projects can use this API)

IDialer dialer = DependencyService.Get<IDialer>();
if (dialer != null) {

...
}

Request the abstraction and the

implementation will be returned

Adding support for dialing the phone

Individual Exercise

❖ Change the UI per-platform

❖ Use platform-specific features

❖ Use the DependencyService

Summary

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

