
Download class materials from

university.xamarin.com

Intro to Cross-Platform

Mobile Development

XAM110

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Work with shared components

2. Share code using Shared Projects

3. Share code using Portable Class Libraries

4. Share code using .NET Standard libraries

Objectives

Work with Shared Components

1. Add NuGet packages to your

application

2. Add components to your

application

Tasks

❖ One of the main reasons to use

Xamarin is the possibility of sharing

a significant portion of your code

across all your supported platforms

Sharing code

❖ Xamarin applications are

native and therefore will

always include some

platform-specific code

Sharable code

30%

70%

iOS

14%

86%

Android

15%

85%

Windows

statistics taken from iCircuit

Platform

Specific

Cross

Platform

❖ Sharable code is split between

reusable components and

platform-independent code

Sharable code

40%

60%

Your Code

Components

❖ Xamarin.Forms provides shared set of UI controls to design the user

interface that ultimately render native UIs on iOS, Android and Windows

Xamarin.Forms

UI + Application Logic (C#)

(PCL or Shared Project)

Xamarin.Forms

Android iOS Windows

❖ github.com/xamarin/plugins

maintains a list of open-source

components which you can use

in your Xamarin based

applications

Other open-source plug-ins

❖ NuGet is a package manager for .NET that allows you to locate, install,

update and remove shared components from within Visual Studio

NuGet

www.nuget.org

http://www.nuget.org/

❖ Add NuGet packages in Visual Studio by right-clicking on the project

and selecting Manage NuGet Packages …

Using NuGet in Visual Studio on Windows

Can search, update components and even revert to older revisions

❖ Add NuGet packages in Visual Studio by right-clicking on the project

and selecting Add > Add NuGet Packages…

Using NuGet in Visual Studio for Mac

❖ Anytime you are writing code which does not depend on a specific

platform feature, it is potentially sharable, particularly if it:

What can be shared?

Talks to a web service

Create shared classes + methods and then use them from your platform-specific

code to maximize the shareable surface area

Parses a data

format

Uses a

database

Performs

processing or logic

❖ If the code you are writing depends on device or platform-specific APIs,

or APIs not available in your project, then you will need to isolate it's use

or provide some kind of abstraction to use it from your shared code

When is code not sharable?

Access system

information

Use files and folders

on the device

Access personal

information

Use external

devices

Flash Quiz

① All code you build with Xamarin is sharable across all platforms

a) True

b) False

Flash Quiz

① All code you build with Xamarin is sharable across all platforms

a) True

b) False

Flash Quiz

② The main thing that makes code sharable across platform is _______

a) When it is related to I/O

b) When it comes from NuGet

c) When it does not depend on any platform APIs

d) All of the above

Flash Quiz

② The main thing that makes code sharable across platform is _______

a) When it is related to I/O

b) When it comes from NuGet

c) When it does not depend on any platform APIs

d) All of the above

Flash Quiz

③ Which of the following might be possible candidates for sharing?

a) Code that accesses a web service with HttpClient

b) Validation rules for my UI which uses Regex and returns booleans

c) Code that uses local notifications on the device

d) Code that runs an algorithm to compare flight prices in parallel

Flash Quiz

③ Which of the following might be possible candidates for sharing?

a) Code that accesses a Web Service with HttpClient

b) Validation rules for my UI which uses Regex and returns booleans

c) Code that uses local notifications on the device

d) Code that runs an algorithm to compare flight prices in parallel

Flash Quiz

1. Add NuGet packages to your

application

2. Add components to your

application

Summary

❖ There are two project styles available for sharing code – which one you

select has an impact on how and what kind of code is shared

Available project types

Shared Project Shared Binaries

Share code using

Shared Projects

1. Share code across multiple projects

with a shared project

2. Execute platform-specific code

from a Shared Project

Tasks

❖ Shared Projects enable project-level

sharing of source + assets

✔ single copy of source file

✔ compiled uniquely into project

✔ Normal refactoring + navigation

works

What is a Shared Project?

❖ Shared project defines the included files as well as the build type

(Compile, None, etc.), but does not actually generate any output

Shared Project packaging

Shared.shproj

NoteManager.cs

NoteItem.cs

Paperclip.png

Shared Projects defined

by .shproj type

❖ Adding a reference to a shared project adds all the files to the target

during the compile process, so each source file is compiled for the

target

Shared Project internals

AnyNote.Droid.csproj

NoteFragment.cs

FreehandFragment.cs

AnyNote.iOS.csproj

NoteViewController.cs

FreehandViewController.cs

AnyNote.UWP.csproj

NoteView.xaml.cs

DrawInkView.xaml.cs

Using Shared Projects

Demonstration

❖ Several strategies for managing platform-specific code when using File

Linking or Shared Projects

Platform-specific code strategies

Conditional
Compilation

Class
Mirroring

Partial
Classes +
Methods

public static string DatabaseFilePath
{

get
{

var filename = "HRdb.db3";
#if WINDOWS_UWP

var path = filename;
#elif __ANDROID__

var path = Path.Combine(
Environment.GetFolderPath(

Environment.SpecialFolder.Personal),
filename);

#elif __IOS__
string documentsPath = Environment.GetFolderPath(

Environment.SpecialFolder.Personal);
var path = Path.Combine(

documentsPath,
"..", "Library",
filename);

#endif
return path;

}
}

❖ Easiest strategy is to use

conditional compilation to

isolate platform specific

code

#if __MOBILE__

#if __ANDROID__

#if __IOS__

#if WINDOWS_UWP

Conditional compilation

❖ Can provide specific implementation of a dependency used in the shared

project – remember the shared project is not compiled on it's own

Class mirroring

public class NoteManager
{

void CloudBackupComplete() {
Alert.Show("Success!",

"Notes have been backed up.");
}

}
Shared Project

class Alert
{

internal static void Show(string title,
string message) {

new UIAlertView(title, message, null, "OK")
.Show();

}
}

class Alert
{

internal static void Show(string title,
string message) {

new AlertDialog.Builder(Application.Context)
.SetTitle(title)
.SetMessage(message)

}

AnyNote.iOS

AnyNote.Droid

❖ Partial classes allow you to break

your implementation into multiple

source files

❖ Used primarily for generated code

❖ Can also be used to provide

platform-specific implementations

Partial classes
partial class NoteManager
{

void OnDeleteNote() {
if (ShowAlert("Warning!", "...")) {

...
}

}
}

partial class NoteManager
{

bool ShowAlert(
string title, string msg) {

...
}

}

Shared Project

AnyNote.iOS

❖ Can use partial methods to make

the implementation optional

❖ If the method is not provided by the

implementation, then the call to the

method is omitted from the

compiled code

Partial methods

partial class NoteManager
{

partial void ShowPrintSettings();

void PrintNote(NoteItem note) {
...
ShowPrintSettings();

}
}

Shared Project

partial class NoteManager
{

// No definition of method
}

NoteManager.iOS

Working with Shared Projects

Individual Exercise

Flash Quiz

① Shared Projects create an output assembly directly

a) True

b) False

Flash Quiz

① Shared Projects create an output assembly directly

a) True

b) False

Flash Quiz

② What types of files can you add to a Shared Project?

a) Source Code only

b) Source and Image assets

c) Source and Data files

d) Anything supported by the targets using the project

Flash Quiz

② What types of files can you add to a Shared Project?

a) Source Code only

b) Source and Image assets

c) Source and Data files

d) Anything supported by the targets using the project

Flash Quiz

③ What techniques can be used to isolate platform specific code in a

Shared Project?

a) Conditional Compilation

b) Partial classes

c) Both (a) and (b)

d) None of the above.

Flash Quiz

③ What techniques can be used to isolate platform specific code in a

Shared Project?

a) Conditional Compilation

b) Partial classes

c) Both (a) and (b)

d) None of the above.

Flash Quiz

1. Share code across multiple projects

with a shared project

2. Execute platform-specific code

from a Shared Project

Summary

Share code using

Portable Class Libraries

1. Portable Class Libraries

2. Profiles

3. Handling Platform Abstractions

Tasks

Portable

Class

Library

.NET

Silverlight

Windows

Phone

Android

iOS

UWP

❖ Class Library projects are tied to a

specific platform + frameworks

Class Library projects

❖ Portable Class Libraries are assemblies that can be used by different

flavors of .NET without recompiling

Portable Class Libraries (PCL)

❖ A PCL is tied to a specific profile which defines the specific APIs it can use

How does it work?

Feature
.NET

Framework

Windows

Store
Silverlight

Windows

Phone (SL)

Windows

Phone (Store)
Xamarin

Core Libraries ✔ ✔ ✔ ✔ ✔ ✔

LINQ ✔ ✔ ✔ ✔ ✔ ✔

IQueryable ✔ ✔ ✔ 7.5+ ✔ ✔

Compression 4.5+ ✔ ✖ ✖ ✔ ✔

Data Annotations 4.0.3+ ✔ ✔ ✖ ✖ ✔

System.IO.File ✖ ✖ ✖ ✖ ✖ ✖

Configuring Portable Class Libraries

You select the platforms the library will be

used on – this decides the profile

The available combinations are controlled

by the profiles Microsoft has defined

The more platforms you choose, the less

APIs you will be able to use

Pick only the framework targets you need right now to give you the broadest API reach

as possible, can always add other targets later if you expand your platforms

❖ Some platform combinations are

not allowed because Microsoft has

not defined a profile for that

combination

❖ IDE will attempt to pick the closest

variation, or give an error and

require that you add an additional

target

Missing profiles

Creating a Portable Class Library

Demonstration

❖ PCLs are limited to features which are common to the targeted frameworks;

this means a lot of classes will be missing when you are in a PCL project

PCL limitations

Selected profile has no constructor on

StreamReader which takes a string

partial class NoteManager
{

void LoadNotes(string filename) {
var reader = new System.IO.StreamReader(filename);

}
}

❖ Several approaches you can take to passing data between the platform-

specific code and the shared (PCL) code

Platform-specific code strategies

Fill in properties

with loaded data

Call the API in the

platform-specific code and

fill in exposed public

properties in the shared

code with the results

❖ Several approaches you can take to passing data between the platform-

specific code and the shared (PCL) code

Platform-specific code strategies

Fill in properties

with loaded data

Open and pass

supported types

to PCL

Decide the location +

filename, open a Stream
and let shared code

parse/load the data

Open and pass

supported types

to PCL

❖ Several approaches you can take to passing data between the platform-

specific code and the shared (PCL) code

Platform-specific code strategies

Fill in properties

with loaded data

Design higher-

level abstractionsCan use an abstraction such as

an interface or an event and

provide an implementation of

that abstraction in the

platform-specific project(s)

❖ PCLs can expose events or delegates to request extensibility from the

platform code, particularly effective if requirements are small

Callbacks

public class Dialer
{

public static
Func<string,bool> MakeCallImpl;

public bool MakeCall(string number) {
if (MakeCallImpl(number)) {

...
}

}
}

Dialer.MakeCallImpl = number =>
{
return UIApplication

.SharedApplication

.OpenUrl(new NSUrl(
"tel:" + number));

}

PCL

Xamarin.iOS

❖ Complex requirements can be described by an

abstraction that is defined in the PCL

Platform abstractions

Shared code defines IDialer interface

to represent required functionality – this

is what the PCL uses to get to the API

public interface IDialer
{

bool MakeCall(string number);
}

PCL

PhoneDialerIOS

PhoneDialerDroid

PhoneDialerWin

Platform projects implement the

shared dialer interface using the

platform-specific APIs

❖ Can supply concrete implementation to PCL via constructor, method or

property setter; this technique is often called Dependency Injection

Injecting dependencies

Dialer.Instance = new Dialer(new iPhoneDialer());

Dialer.Instance.Initialize(new AndroidDialer());

Dialer.Instance.Platform = new WindowsDialer();

OR

OR

Working with Portable Class Libraries

Individual Exercise

Flash Quiz

① Portable Class Libraries share source code files across projects

a) True

b) False

Flash Quiz

① Portable Class Libraries share source code files across projects

a) True

b) False

Flash Quiz

② When you define your platform targets, you are selecting a _______.

a) Configuration

b) Platform Group

c) Profile

d) Grouping

Flash Quiz

② When you define your platform targets, you are selecting a _______.

a) Configuration

b) Platform Group

c) Profile

d) Grouping

Flash Quiz

④ What techniques can I use to add platform-specific code to a PCL?

a) Dependency Injection (DI)

b) Service Locator

c) Publisher / Subscribe (events or messaging system)

d) Any of the above

Flash Quiz

④ What techniques can I use to add platform-specific code to a PCL?

a) Dependency Injection (DI)

b) Service Locator

c) Publisher / Subscribe (events or messaging system)

d) Any of the above

Flash Quiz

1. Portable Class Libraries

2. Profiles

3. Handling Platform Abstractions

Summary

Portable

Class

Library

.NET

Silverlight

Windows

Phone

Android

iOS

UWP

Share code using

.NET Standard libraries

1. Create a .NET Standard library

2. Select a .NET Standard target version

for your library

3. Use a .NET Standard library with a

Xamarin app

Tasks

❖ Sharing code across platforms has some common challenges

Motivation

API surfaces are

not uniform

New platforms may

not have the APIs

your library needs

❖ In .NET, a platform is a set of software components capable of building

and executing an application on some target operating systems

Platforms

.NET Framework
(Desktop/Server/Mobile)

Tools Runtime Library

.NET Core
(Server/Desktop)

Tools Runtime Library

Mono for Xamarin
(Mobile/Desktop)

Tools Runtime Library

The three primary Microsoft platforms let you run apps on a wide range of targets

.NET Framework

Tools Runtime Library

.NET Core

Tools Runtime Library

Mono for Xamarin

Tools Runtime Library

❖ The libraries offered by each platform are different – they do not

provide a uniform API surface for you to code against

Library variation

This makes it difficult for you to write one library that works on all these

platforms – what if you need to use an API that's not available everywhere?

.NET Framework

Tools Runtime

.NET Core

Tools Runtime

Mono for Xamarin

Tools Runtime
.NET

Standard

❖ .NET Standard is a library specification that provides the same APIs

across all .NET platforms

What is .NET Standard?

This makes it easier to build a library that works on all these platforms

since the available APIs are standardized

.NET

Standard

.NET

Standard

❖ .NET Standard is under active development and has many versions –

each new version increases the number of available APIs

.NET Standard versions

2.0 (Q3 2017)

1.6

...

1.1

1.0

New versions are

supersets, they

do not remove

any existing APIs

❖ Visual Studio 2017 and Visual Studio for Mac v7.0 include a project

template for creating .NET Standard class libraries

How to create a .NET Standard library?

Choose the version in the properties2Use the template to create the project1

❖ The .NET team at Microsoft decides which APIs to add to each .NET

Standard release (this includes a public feedback process)

Available APIs

Version APIs API count

1.0 Primitives, reflection, tasks, collections, LINQ to Objects, XML, ... 7,949

1.1 Concurrent collections, interop, HTTP interactions, ... 10,239

1.2 Threading timer, more interop, ... 10,285

1.3 Console, file system, thread pool, sockets, cryptography, ... 13,122

1.4 More cryptography, ... 13,140

1.5 More assembly members, more streams, ... 13,355

1.6 Even more cryptography, more regex, expression compiling, ... 13,501

2.0 (Q3 2017)
Data classes, drawing, pipes, caching, SMTP, web sockets, more

serialization, XPath, expanded many existing classes, …
32,638

.NET Standard API use

❖ Your library can use .NET Standard APIs added in versions less than or

equal to your target version

.NET Standard

v1.0 APIs
.NET Standard

v1.1 APIs
.NET Standard

v1.2 APIs
.NET Standard

v1.3 APIs
.NET Standard

v1.4 APIs
.NET Standard

v1.5 APIs
.NET Standard

v1.6 APIs

My .NET Standard lib
Target framework:

.NETStandard 1.4 ˅

Create a .NET Standard library and use .NET Standard APIs

Demonstration

.NET Framework v4.6.2

Tools Runtime v1.5

.NET Core v1.0

Tools Runtime v1.6

Xamarin Cycle 9

Tools Runtime v1.6

❖ Each platform can support its preferred version of .NET Standard

Platform support

❖ Your library can be used by platforms supporting your targeted .NET

Standard version or higher

Where can your library be used?

.NET Framework v4.5.1

Tools Runtime v1.2

.NET Core v1.0

Tools Runtime v1.6

Xamarin Cycle 9

Tools Runtime v1.6

My .NET Standard lib
Target framework:

.NETStandard 1.4 ˅

Which libraries can you reference?

❖ A library targeting .NET Standard can reference a library targeting the

same .NET Standard version or lower

Library D
Target framework:

.NETStandard 1.6 ˅
Library B

Target framework:

.NETStandard 1.1 ˅
Library C

Target framework:

.NETStandard 1.4 ˅

Library A
Target framework:

.NETStandard 1.4 ˅

How to choose target version

❖ You should target the lowest .NET Standard version that gives you all the

APIs you need – this maximizes the number of platforms you can run on

My Library
Target framework:

.NETStandard 1.6 ˅
My Library

Target framework:

.NETStandard 1.2 ˅

Which target version

should you choose?

Targeting higher means

you can use more APIs

(e.g. any APIs added

in 1.0 through 1.6)

Targeting lower means you

are compatible with more

platforms (e.g. all that

support at least 1.2)

PCL Profile compatibility

❖ Most PCL Profiles popular in Xamarin development are paired with .NET

Standard versions, allowing those libraries to reference each other

PCL Profile (all support Xamarin) .NET Standard

Profile151 (.NET Framework 4.5.1, Windows 8.1, Windows Phone 8.1) 1.2

Profile44 (.NET Framework 4.5.1, Windows 8.1) 1.2

Profile111 (.NET Framework 4.5, Windows 8, Windows Phone 8.1) 1.1

Profile7 (.NET Framework 4.5, Windows 8) 1.1

Profile259 (.NET Framework 4.5, Windows 8, Windows Phone 8.1, Windows Phone Silverlight 8) 1.0

Profile78 (.NET Framework 4.5, Windows 8, Windows Phone Silverlight 8) 1.0

❖ Visual Studio lets you convert a PCL to a .NET Standard library

Convert a PCL to .NET Standard

Choose your version2Retarget in the project properties1

Handle platform differences

❖ You use the same techniques to handle platform-specific code in .NET

Standard libraries as in PCLs

Callbacks
Interface

Abstractions

Dependency

Injection

Upgrading from PCL to .NET Standard Libraries

Demonstration

Flash Quiz

① Libraries targeting .NET Standard versions share source code files across

projects

a) True

b) False

Flash Quiz

① Libraries targeting .NET Standard versions share source code files across

projects

a) True

b) False

Flash Quiz

② A .NET Standard library targeting .NET Standard version 1.4 can use

APIs from .NET Standard 1.2

a) True

b) False

Flash Quiz

② A .NET Standard library targeting .NET Standard version 1.4 can use

APIs from .NET Standard 1.2

a) True

b) False

Flash Quiz

1. Create a .NET Standard library

2. Select a .NET Standard target version

for your library

3. Use a .NET Standard library with a

Xamarin app

Summary

Code-sharing comparison

❖ Selecting a code-sharing technique depends on many factors – each

style has advantages and disadvantages

Shared Projects PCL / .NET Standard libraries

Pros Cons Pros Cons

All APIs available Can lead to spaghetti code Enforces architectural design Limited APIs available

Platform-specific logic

can be added directly

Difficult to unit test due to

conditional code

Can be unit tested

separately

Difficult to share non-

code files

All file types can be

shared

Must be shipped in source

form

Can be shipped in binary

form (NuGet)

Limited to target

platforms or APIs

Smaller package

sizes/platform-

specific optimizations

Requires more work to

integrate platform-

specific code

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

