
Download class materials from

university.xamarin.com

Touch and Gestures

IOS240

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Respond to touch events

2. Handle multi-touch events

3. Utilize gestures

Objectives

Respond to touch events

1. Enabling touch events on a view

2. Responding to touch events

Tasks

❖ Touch-based UIs have become the expected way to interact with

electronic devices through standardized gestures

Motivation

Maps and

navigation

Books and

magazines

… and of course

games!

❖ There are two ways to programmatically respond to iOS touch

interactions

Touch in iOS

Touch Events

Low-level events

Gestures

High-level actions

❖ Utilize low-level touch events when complete control over touch

interactions is required

Touch events

Games Creative Apps

❖ We enable touch interactions for a

selected view in the designer by

checking User Interaction Enabled

Enable touch in the designer

❖ Enable touch programmatically by setting the

UserInteractionEnabled property on a UIView to true

Enable touch programmatically

var myImageView = new UIImageView (...);
myImageView.UserInteractionEnabled = true;

If this property is false, touch events

will fall through to the parent

Some views have UserInteractionEnabled by default, but it’s generally a good idea

to set it explicitly

❖ Touch events are low level interactions which are reported by a UIView
and include:

What are touch events?

Began Moved Ended Cancelled

❖ There are four phases to a touch interaction, each represented by a

virtual method on the base UIResponder class which is inherited by

UIView, UIViewController and UIApplication

Touch event methods

public class UIResponder
{

...
public virtual void TouchesBegan (NSSet touches, ...) {...}
public virtual void TouchesMoved (NSSet touches, ...) {...}
public virtual void TouchesEnded (NSSet touches, ...) {...}
public virtual void TouchesCancelled (NSSet touches, ...){...}

}

❖ iOS walks the responder

chain of UIResponder
objects to find a handler for a

touch event

❖ System performs hit-testing

to identify the initial view

(called the first responder) and

then continues up the view

hierarchy

The Responder Chain
Application

Window

Superview

Superview

Initial view

View

Controller

Override Touch Methods

Group Exercise

❖ Override the touch event handler methods to receive data for each

phase of a finger touch via the NSSet touches argument

Touch data within NSSet

public override void TouchesMoved(NSSet touches, UIEvent evt)
{

base.TouchesMoved(touches, evt);

...
}

NSSet contains specific

information about the

touch event

❖ NSSet touches holds UITouch objects representing each finger

interacting with the screen

Retrieving the touch data

public override void TouchesMoved(NSSet touches, UIEvent evt)
{

base.TouchesMoved(touches, evt);

var touch = touches.AnyObject as UITouch;

if (touch == null)
return;

...
}

Use the AnyObject property

to obtain the first UITouch

Then cast it to a
UITouch object

❖ A UITouch object contains the data

representing the presence or

movement of a finger onscreen

including:

▪ Current Location

▪ Previous Location

▪ Phase

▪ Tap Count

▪ Pressure (via radius)

▪ etc.

What is UITouch?

❖ We can get the location of the current touch event from using the

LocationInView method

Touch location

public override void TouchesMoved(NSSet touches, UIEvent evt)
{

var touch = touches.AnyObject as UITouch;

nfloat xPos = touch.LocationInView(this.View).X;
nfloat yPos = touch.LocationInView(this.View).Y;
...

}

❖ Get the location of the current touch event from the LocationInView
method - To find the movement delta, we also use

PreviousLocationInView

Touch movement

nfloat offsetX = touch.PreviousLocationInView(View).X -
touch.LocationInView(View).X;

nfloat offsetY = touch.PreviousLocationInView (View).Y -
touch.LocationInView(View).Y;

Returns the previously
reported location of the view

Drag and Snap

Individual Exercise

❖ Visual cues help the user

understand where to interact with

the screen, common cues include:

▪ Color

▪ Location

▪ Context

▪ Icons

▪ Labels

▪ Animations

Provide visual cues for touchable UI

❖ Apple recommends a minimum of 44x44 points for

touchable UI

▪ 44 is the minimum – larger is ok

▪ Leave white space between touchable UI

Sizing and spacing your UI

❖ Consider how your user will hold the device and use your application,

considerations include:

Design for fingers

▪ Common interaction scenarios

▪ What parts of the screen may be

obscured by the hand

▪ Relative position of related controls

❖ What's wrong with this UI?

UI design

❖ Why does this UI work?

UI design

Flash Quiz

① You should always leave 44 points of space between views

a) True

b) False

Flash Quiz

① You should always leave 44 points of space between views

a) True

b) False

Flash Quiz

② What types of cues can you use to indicate interactivity?

a) Color

b) Location

c) Animations

d) All the above

Flash Quiz

② What types of cues can you use to indicate interactivity?

a) Color

b) Location

c) Animations

d) All the above

Flash Quiz

1. Enabling touch events on a view

2. Responding to touch events

Summary

Handle multi-touch events

1. Enable multi-touch on views

2. Respond to multi-touch events

Tasks

❖ Complex UI may need to track multiple fingers simultaneously –

commonly used in entertainment applications

Multi-touch events

Music apps Multiplayer or complex

games

❖ Current iPhones are capable of tracking up to 5 simultaneous touch

points; the iPad is capable of 11

How many simultaneous touch points?

❖ Multi-touch isn't enabled by default but can be enabled in the Designer

by checking Multiple Touch in the properties pain for a selected view

Enabling multi-touch in the designer

User Interaction Enabled

must also be checked

❖ Multi-touch can be enabled programmatically by setting the

MultipleTouchEnabled property of a UIView to true

Enabling multi-touch programmatically

UIImageView myImageView = new UIImageView (...);

myImageView.UserInteractionEnabled = true;

myImageView.MultipleTouchEnabled = true;

User interaction must also be
enabled

❖ For multi-touch, iOS will pass in a UITouch object to the touch

overrides for each finger who's phase has changed or properties have

updated

NSSet and multi-touch

public override void TouchesMoved(NSSet touches, UIEvent evt)
{

foreach (UITouch touch in touches)
{

var loc = touch.LocationInView (this.View);
...

}
}

❖ UITouch objects persist across across touch phases for a given

sequence of motions

UITouch and multi-touch

TouchesBegan

UITouch
0x23DE0C

TouchesEndedTouchesMoved

UITouch
0x23DE0C

UITouch
0x23DE0C

The same object for a specific finger will be

presented in each event method

❖ The Handle for a specific UITouch object will persist across phases and

can be used to reference other data

Tracking touch across phases

var colors = new Dictionary<IntPtr, UIColor>();

public override void TouchesBegan(NSSet touches, UIEvent evt)
{

foreach (UITouch touch in touches) {
colors.Add(touch.Handle, lineColor);

}
...

}

Xam Paint

Individual Exercise

1. Enable multi-touch on views

2. Respond to multi-touch events

Summary

Implement gestures

1. Create and assign a gesture recognizer

2. Respond to a gesture's change in state

3. Use multiple gestures simultaneously

Tasks

❖ Gestures are recognized as a continuous series of touch events

performed by the user to invoke a specific task

What are iOS gestures?

Tap Pinch Long Press Pan

❖ There are two types of gestures: discrete and continuous

Discrete and continuous gestures

Discrete

gestures

Continuous

gestures

has no fixed path and may be

carried out indefinitely, for

example, pinch-and-zoom

contain one or more finite touch

events such as tap

Tap

❖ UIGestureRecognizer converts low-level touch events into higher-

level actions that correspond to discrete or continuous gestures

What is UIGestureRecognizer

Swipe Long Press
Discrete

gestures

Pinch PanRotation
Continuous

gestures

UITapGestureRecognizer UISwipeGestureRecognizer UILongPressGestureRecognizer

UIPanGestureRecognizerUIRotationGestureRecognizerUIPinchGestureRecognizer

1) Enable user interaction

2) Create a gesture recognizer

3) Configure the gesture recognizer (if needed)

4) Set the target method to execute on completion

5) Add the gesture recognizer to a View

Steps to use a gesture

❖ Set the UserInteractionEnabled property on a view to true to

enable user interaction

Enable user interaction [1]

myImageView.UserInteractionEnabled = true;
myImageView.MultipleTouchEnabled = true;

enable multi-touch for gestures

that use more than one finger

Instantiate

❖ Choose and instantiate a gesture recognizer based on the type of

gesture you’re using

Create a gesture recognizer [2]

public override OnCreate ()
{

var doubleTapGesture = new UITapGestureRecognizer ();
...

}

Instantiate

❖ Some gesture recognizers can be customized by using their public

properties

Configure the gesture recognizer [3]

var doubleTapGesture = new UITapGestureRecognizer ();

doubleTapGesture.NumberOfTapsRequired = 2;
...

Instantiate

❖ Use the AddTarget method to specify what Action should be raised

when the gesture is performed

Set the target [4]

var doubleTapGesture = new UITapGestureRecognizer ();

...
doubleTapGesture.AddTarget (() => {

Debug.WriteLine("double tap");
});

var doubleTapGesture = new UITapGestureRecognizer (OnTap);

or

Instantiate

❖ The gesture recognizer must be added to UIView to receive touch

events

Add the gesture recognizer [5]

myImageView = new UIImageView(...);
myImageView.UserInteractionEnabled = true;

var doubleTapGesture = new UITapGestureRecognizer ();

...

myImageView.AddGestureRecognizer (doubleTapGesture);

❖ The Action associated with a gesture recognizer’s target can optionally

receive the recognizer object which can be used to retrieve specific

details about the gesture

Responding to gestures

void OnRotation(UIRotationGestureRecognizer gesture)
{

var currentRotation = gesture.Rotation;
...

}

var rotationGR = new UIRotationGestureRecognizer (OnRotation);

❖ The Core Graphics CGAffineTransform structure can be used to

rotate, scale, and translate UIViews

Transforms

CGAffineTransform transform = CGAffineTransform.MakeIdentity ();

transform.Rotate (angle: rotationInRadians);

transform.Scale (scaleX, scaleY);

transform.Translate (translateX, translate.Y);

myUIView.Transform = transform;

Factory method creates a
transform using an identity matrix

CGAffineTransform
exposes methods to

rotate, scale, translate
and skew

Apply the transform by assigning the
Transform property of a UIView

Pan gestures

Individual Exercise

❖ Gesture recognizers transition through states in a predefined fashion

Discrete gesture recognizer states

Possible

Discrete gestures can be in 1 of 3 states

Failed Recognized

❖ Gesture recognizers transition from one state to another in a predefined

way

Continuous gesture recognizer states

Possible

Failed

Began Changed

Failed Recognized
Continuous gestures have

additional transitional states

❖ The UIGestureRecognizer's target will be called as the gesture

changes states

Recognizing gesture states

void HandleRotation(UIRotationGestureRecognizer gesture)
{

switch (gesture.State) {
case UIGestureRecognizerState.Possible: break;
case UIGestureRecognizerState.Began: break;
case UIGestureRecognizerState.Recognized: break;
case UIGestureRecognizerState.Changed: break;
case UIGestureRecognizerState.Failed: break;
...

}

❖ Can use multiple gesture recognizers together, but must enable support

in code on each recognizer

Using gestures simultaneously

rotationGesture.ShouldRecognizeSimultaneously = IsSimultaneous;

public bool IsSimultaneous (UIGestureRecognizer gestureRecognizer,
UIGestureRecognizer otherGestureRecognizer)

{
return ShouldAllowGesture (otherGestureRocognizer);

}

swipeGesture.ShouldRecognizeSimultaneously = IsSimultaneous;

Using Multiple gestures – add scale and rotation

Individual Exercise

1. Create and assign a gesture recognizer

2. Respond to a gesture's change in state

3. Use multiple gestures simultaneously

Summary

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

