
Download class materials from 

university.xamarin.com

Background Modes and 

File Transfers

IOS211



Information in this document is subject to change without notice. The example companies, 

organizations, products, people, and events depicted herein are fictitious. No association with 

any real company, organization, product, person or event is intended or should be inferred. 

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other 

intellectual property rights covering subject matter in this document. Except as expressly 

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document 

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual 

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other 

countries.

Other product and company names herein may be the trademarks of their respective owners.



1. Recap iOS backgrounding 

techniques

2. Perform Long-Running Tasks 

without time limits with 

Background Modes

3. Transfer files in the background

Objectives



Recap iOS backgrounding techniques



1. Decide which of the three iOS 

backgrounding techniques is 

appropriate for your app

Tasks



 A backgrounded app runs code while in the background state. Multiple 

applications can be backgrounded at the same time.

What is a backgrounded app?

Not running

Active

BackgroundInactive Suspended

Background state



 iOS has three ways for apps to do work in the background

Recall: iOS backgrounding options

Finite-Length

Tasks

Any code,

but time limited

 iOS210

Background

Transfers

Data transfer,

not time limited

Long-Running

Tasks

Only for specific tasks,

not time limited



 iOS has three ways for apps to do work in the background

Recall: iOS backgrounding options

Finite-Length

Tasks

Any code,

but time limited

 iOS210

Background

Transfers

Data transfer,

not time limited

Long-Running

Tasks

Only for specific tasks,

not time limited



 Long-Running Tasks let you execute specific operations without time 

restrictions even if the app is backgrounded

Long-Running Tasks

Only allowed for

these operations



 Background Transfer lets you transfer files in a separate process that 

continues not only if your app is suspended, but also if it is terminated

Background Transfer

App notified when transfer

completes, even if it was terminated



1. Decide which of the three iOS 

backgrounding techniques is 

appropriate for your app

Summary



Perform Long-Running Tasks without 

time limits



1. Declare a background mode

2. Play music while the app is 

backgrounded

Tasks



 Some operations require more background execution time than Finite-

Length Tasks can offer

Motivation

Get navigation instructionsListen to music



 Long-Running Tasks let you run specific operations, even if the app is 

backgrounded or terminated – the exact behavior differs based on the 

type of operation

What are Long-Running Tasks?

Audio and Video Newsstand Downloads
Act as Bluetooth LE 

Accessory

Location Updates
External Accessories 

Communication
Background Fetch

VOIP
Use Bluetooth LE 

accessories
Remote Notifications



 Background modes declare which Long-Running Tasks are used by the 

app and are represented by entries in the Info.plist file

What are background modes?



 Declared background modes influence how your app behaves when 

backgrounded and how Apple checks your app in the review process

Why must background modes be set?

Location 

Updates

App will be restarted on 

significant location changes

App will not be suspended as 

long as it plays media

Audio & 

Video

...
Similar behavior for other 

background modes

Apple will verify that you 

use the declared modes 

and that you use them 

according to their rules



 Can select background modes in the Info.plist GUI editor, or can 

hand-edit the XML file and add them directly

How to set background modes?



 In iOS9 and beyond, apps that want to receive location updates in the 

background must set the info.plist flag and turn on background updates 

in CLLocationManager

Location updates

CLLocationManager manager;
...
if (UIDevice.CurrentDevice.CheckSystemVersion(9,0)) {

manager.AllowsBackgroundLocationUpdates = true;
}

This must be explicitly enabled or your app will not receive 

location updates while suspended in iOS9+



 To demonstrate Long-Running Tasks we will use audio playback as an 

example

Audio playback

Audio and Video Newsstand Downloads
Act as Bluetooth LE 

Accessory

Location Updates
External Accessories 

Communication
Background Fetch

VOIP
Use Bluetooth LE 

accessories
Remote Notifications



 iOS uses an audio session singleton, represented by AVAudioSession,
to handle an app’s audio behavior

How does iOS handle audio?

Input devices

Output devices

iOS manages audio 

devices and inter-app 

audio behavior

Your App

Other App

Other App

Apps configure audio 

session singleton



 The AVAudioSession singleton lets you configure the general audio 

behavior of your app

Configuration options

AVAudioSession

Does your app 

record audio?

How to react to 

the “silence” 

hardware switch?

Should audio output 

from another app be 

muted?

Should audio 

playback continue 

in the background?



 AVAudioSession uses categories to define how your app intends to 

use audio

How to configure for background audio?

public enum AVAudioSessionCategory
{

Ambient,
SoloAmbient,
Playback,
Record,
PlayAndRecord,
AudioProcessing,
MultiRoute

}

var s = AVAudioSession.SharedInstance();
s.SetCategory(AVAudioSessionCategory.Playback);
s.SetActive(true);

Session must be activated; this can fail if another 

app has claimed exclusive audio output



 If the selected category supports background playback, the app must 

also specify the "Audio and Airplay" background mode 

How to configure for background audio?

Enable to prevent 

suspension of app 

while playing audio



 All media APIs of iOS can be used during background execution

What APIs can be used for audio output?

AVAudioPlayer
AVSpeech-

Synthesizer

MPMoviePlayer-

Controller

Play music and

sound effects

Text to speechMedia playback

with AirPlay support

AVAudioSession



 We will focus on AVAudioPlayer which let‘s us play MP3 files easily

What APIs can be used for audio output?

Play music and

sound effects

Text to speechMedia playback

with AirPlay support

AVAudioPlayer
AVSpeech-

Synthesizer

MPMoviePlayer-

Controller

AVAudioSession



 AVAudioPlayer can be initialized with audio files or NSData

How to use AVAudioPlayer?

NSError error = null;
var url = NSUrl.FromFilename("song.mp3");

this.audioPlayer = new AVAudioPlayer(url, "mp3", out error);

if(error == null)
{

audioPlayer.Play();
}

Will start playback and keep 

playing in the background if 

AVAudioSession and background 

mode are correctly configured

AVAudioPlayer instance should be class scope to prevent premature collection.



 Apps registered for the audio background mode will not be suspended 

as long as they don’t stop AVAudioPlayer

Lifecycle of an app playing audio

Foreground

Background

Plays audio

Audio 

keeps

playing

Audio stops,

app will be 

suspended

App is terminated and 

removed from memory



 If an audio app registers for remote control events, it will be restarted 

into the background before the events are delivered

How to allow the app to be restarted?

Control Center 

with soft keys

Headset with 

remote control



 API to start and stop receiving remote control events is provided by 
UIApplication

API to register for remote control events

virtual void BeginReceivingRemoteControlEvents ();

virtual void EndReceivingRemoteControlEvents ();



 If app requests to receive events, iOS will call the virtual 

RemoteControlReceived method on the current UIViewController

Getting remote control events

public class CustomCtr : UIViewController
{
public override void RemoteControlReceived (UIEvent e)
{
// Handle event (stop, play, forward, ...)

}
}



 When a remote control event is received, the app will be launched into 

the background and can continue playing audio

Lifecycle of an app playing audio

Foreground

Background

Plays audio App launches into background 

in response to external event 

Audio 

keeps

playing

Audio stops,

app will be 

suspended

App is terminated and 

removed from memory

Other background modes use similar approaches. The app gets restarted for various 

reasons, however the callbacks will be on the UIApplicationDelegate.



Play music in the background

Individual Exercise



1. Declare a background mode

2. Play music while the app is 

backgrounded

Summary



Transfer files in the background



1. Download files even if the app is 

not running

Tasks



 Users expect file transfers to continue when the app is not in the 

foreground

Motivation

Foreground

Background

App begins a download 

using HttpClient in a 

Finite-Length Task

Download must be stopped 

after a few minutes

Complete file cannot 

be downloaded



 iOS will perform uploads and downloads on your behalf

Overview of background transfer

App creates session objects and adds upload or download tasks

iOS will then handle the file transfer independent of the application and notify

the application as each upload/download task completes

App

Upload Session

Upload A Upload B …

Download Session

Download A Download B …



 A session is collection of related upload or download operations that is 

managed by iOS

What is a session?

App

Providing session information allows iOS to prioritize and balance battery life vs. performance

Download Session for videos

Video A Video B …

Download Session for cache data

Map Tile A Map Tile B …



 Sessions are represented by 

NSUrlSession which is an API to 

manage uploads and downloads 

(similar to HttpClient)

 Main advantage: transfers can 

continue even if the app is not 

running because they are managed 

by iOS

What is a session?

We will focus on downloads; however, the concepts we discuss also apply to uploads.



 Sessions are created from a configuration and a delegate

What is required to create a session?

NSUrlSession

Configuration

Configuration defines the 

behavior of the session

Session delegate

Delegate informs app 

about events



 A configuration defines the behavior of the session 

What is a configuration?

Uses disk caches, 

suitable for small 

downloads in the 

foreground

Default

All data is kept

in memory, suitable for 

private browsing 

scenarios

Ephemeral

Allows HTTP/HTTPS 

uploads and downloads 

in the background, even 

if the app was 

terminated by iOS

Background



Uses disk caches, 

suitable for small 

downloads in the 

foreground

Default

All data is kept

in memory, suitable for 

private browsing 

scenarios

Ephemeral

Allows HTTP/HTTPS 

uploads and downloads 

in the background, even 

if the app was 

terminated by iOS

Background

 We will be using the background configuration to download files

What is a configuration?



 A background session configuration can be created with a factory 

method of the NSUrlSessionConfiguration class

How to create a configuration?

var id = "com.xamarin.demo.download";
var config = NSUrlSessionConfiguration

.CreateBackgroundSessionConfiguration (id)
{

// Tweak configuration settings

}

Must supply a unique identifier to allow a 

restarted app to to reconnect to a session



 Session configurations have various properties 

to allow adjustment for optimal performance

 allow downloads over cellular network

 allow iOS to optimize scheduling

 number of concurrent downloads

 timeout intervals

 accept cookies

 … many more

What settings can be configured?



 Session delegates contain methods called by iOS in response to session-

events

What is a session delegate?

Handle authenticationReport progress Handle errors



 Session delegates use a type of 
NSURLSessionDelegate

What is a session delegate?



 Must subclass NSUrlSessionDownloadDelegate and override the 

methods the app is interested in

How to create a session delegate?

public class MySessionDel : NSUrlSessionDownloadDelegate
{

override void DidWriteData (...)

override void DidFinishDownloading (...)

override void DidCompleteWithError (...)

override void DidFinishEventsForBackgroundSession (...)

override void DidResume (...)
}

A chunk of data was received

One of the queued downloads 

finished

Finished with errors

Finished all queued downloads

Resumed an interrupted 

download



 With a session configuration and a session delegate, sessions can be 

created by a factory method in the NSUrlSession class

How to create a session instance?

NSUrlSessionConfiguration config = ...;
NSUrlSessionDownloadDelegate sessionDel = new MySessionDel ();

NSUrlSession session = NSUrlSession.FromConfiguration (
config, sessionDelegate );

...

Create a session from the configuration and 

the delegate that can be used in the 

background and supports downloads

For background session types the 

delegate must be provided



 A session task is a wrapper around an HTTP request that either handles 

uploads or downloads

What is a session task?



 Downloads are represented by NSUrlSessionDownloadTask objects 

and are created by the session

How to start a download?

var session = NSUrlSession.FromConfiguration (...);
...
var url = NSUrl.FromString("https://example.com/song.mp3");
var downloadTask = session.CreateDownloadTask (url);
downloadTask.Resume ();

There is no explicit start method, Resume() is used to start and to resume a 

download; background sessions will continue the download if the app is 

backgrounded or terminated



 iOS 9 security policy enforces ATS on 

background transfers

 Requires TLS 1.2 or better (https)

 Must use a modern key exchange 

algorithm that provides forward security

 Certificates must be signed with SHA256, 

2048-bit RSA key, or better

 Can add exceptions / exclusions into your 

info.plist if necessary, but should prefer to 

conform to this security model if possible

App Transport Security



 iOS downloads files in a separate process and will not place them into 

the app‘s sandbox

Where are downloads saved?

Downloaded file is stored in a 

temporary system folder and can be 

accessed with read permissions

Must copy file into app sandbox for 

further processing



 The session delegate‘s DidFinishDownloading method is passed the 

URL to the downloaded file

How to copy the downloaded file?

public class MyUrlSessionDownloadDelegate : NSUrlSessionDownloadDelegate
{

public override void DidFinishDownloading (
NSUrlSession session,
NSUrlSessionDownloadTask downloadTask,
NSUrl location)

{
NSFileManager fileManager = NSFileManager.DefaultManager;
var documentsFolderPath = Environment.GetFolderPath (Environment.SpecialFolder.MyDocuments);
NSUrl destinationURL = NSUrl.FromFilename(Path.Combine(documentsFolderPath, "targetfile.mp3"));

NSError error;
bool success = fileManager.Copy(location.Path, destinationURL.Path, out error);

}
}

Download location of the 

file in a temporary folder 

outside of the app sandbox



 The session delegate‘s DidFinishDownloading method is passed the 

URL to the downloaded file

How to copy the downloaded file?

public class MyUrlSessionDownloadDelegate : NSUrlSessionDownloadDelegate
{

public override void DidFinishDownloading (
NSUrlSession session,
NSUrlSessionDownloadTask downloadTask,
NSUrl location)

{
NSFileManager fileManager = NSFileManager.DefaultManager;
var documentsFolderPath = Environment.GetFolderPath (Environment.SpecialFolder.MyDocuments);
NSUrl destinationURL = NSUrl.FromFilename(Path.Combine(documentsFolderPath, "targetfile.mp3"));

NSError error;
bool success = fileManager.Copy(location.Path, destinationURL.Path, out error);

}
}

Must copy the file to an 

app-specific folder

The file is in a special location outside the app’s sandbox that can only be accessed with 

native API - File.Copy() can’t be used



 If the app gets terminated by the operating system, iOS will continue

downloads that were added to a background session

What happens if the app gets terminated?

… but if the user terminates 

your app via the task switcher, 

iOS will stop all downloads and 

will not resume them



 If a download completes, login credentials are required or an error 

occurs, iOS will launch the app into the background

When does iOS restart a terminated app?

The app will show up 

in the task switcher 

with an updated UI

Restarted app can 

show a notification 

to inform the user



 If an app was restarted, iOS will eventually call 

HandleEventsForBackgroundUrl on the app delegate

How does iOS notify a restarted app?

void HandleEventsForBackgroundUrl (
UIApplication app, 
string id,
Action handler) 

{
AppDelegate.BackgroundSessionCompletionHandler = handler;

}

Passed the id of the session that requires attention

The completion handler must be retained and called by the app if it has 

reacted to the event that caused the restart



 To reconnect to a session managed by iOS, we have to recreate a 

session with the same identifier and configuration

How to reconnect to the session?

public override void HandleEventsForBackgroundUrl (
UIApplication app, string id, Action handler)

{
BackgroundSessionCompletionHandler = handler;

var config = NSUrlSessionConfiguration.
CreateBackgroundSessionConfiguration (id);

config.AllowsCellularAccess = true;
var session = NSUrlSession.FromConfiguration (

config, new MySessionDelegate(), null);
}



 To reconnect to a session managed by iOS, we have to recreate a 

session with the same identifier and configuration

How to reconnect to the session?

public override void HandleEventsForBackgroundUrl (
UIApplication app, string id, Action handler)

{
BackgroundSessionCompletionHandler = handler;

var config = NSUrlSessionConfiguration.
CreateBackgroundSessionConfiguration (id);

config.AllowsCellularAccess = true;
var session = NSUrlSession.FromConfiguration (

config, new MySessionDelegate(), null);
}

Providing the same 

identifier connects the 

session to the one 

managed by iOS



 To reconnect to a session managed by iOS, we have to recreate a 

session with the same identifier and configuration

How to reconnect to the session?

public override void HandleEventsForBackgroundUrl (
UIApplication app, string id, Action handler)

{
BackgroundSessionCompletionHandler = handler;

var config = NSUrlSessionConfiguration.
CreateBackgroundSessionConfiguration (id);

config.AllowsCellularAccess = true;
var session = NSUrlSession.FromConfiguration (

config, new MySessionDelegate(), null);
}

Configuration must be 

identical to the one 

that was initially used



 To reconnect to a session managed by iOS, we have to recreate a 

session with the same identifier and configuration

How to reconnect to the session?

public override void HandleEventsForBackgroundUrl (
UIApplication app, string id, Action handler)

{
BackgroundSessionCompletionHandler = handler;

var config = NSUrlSessionConfiguration.
CreateBackgroundSessionConfiguration (id);

config.AllowsCellularAccess = true;
var session = NSUrlSession.FromConfiguration (

config, new MySessionDelegate(), null);
}

Methods on delegate 

will be called once the 

session has been 

reconnected



When to call the completion handler?

 Must call the completion handler when the event that caused the restart 

has been handled; often this will happen in the session delegate

public override void DidFinishEventsForBackgroundSession (NSUrlSession session)
{

var handler = AppDelegate.BackgroundSessionCompletionHandler;
AppDelegate.BackgroundSessionCompletionHandler = null;
if (handler != null) {

controller.BeginInvokeOnMainThread(() => {
... // Display local notification to user (not shown)

handler.Invoke ();
});

}
}



When to call the completion handler?

 Must call the completion handler when the event that caused the restart 

has been handled; often this will happen in the session delegate

public override void DidFinishEventsForBackgroundSession (NSUrlSession session)
{

var handler = AppDelegate.BackgroundSessionCompletionHandler;
AppDelegate.BackgroundSessionCompletionHandler = null;
if (handler != null) {

controller.BeginInvokeOnMainThread(() => {
... // Display local notification to user (not shown)

handler.Invoke ();
});

}
}

UI updates can be 

performed but have to be 

made on the main thread



When to call the completion handler?

 Must call the completion handler when the event that caused the restart 

has been handled; often this will happen in the session delegate

public override void DidFinishEventsForBackgroundSession (NSUrlSession session)
{

var handler = AppDelegate.BackgroundSessionCompletionHandler;
AppDelegate.BackgroundSessionCompletionHandler = null;
if (handler != null) {

controller.BeginInvokeOnMainThread(() => {
... // Display local notification to user (not shown)

handler.Invoke ();
});

}
}

Invoke the handler on 

the UI thread, this will 

update the screenshot 

in Task Switcher



Download a file in the background

Individual Exercise



Flash Quiz



① A download created through NSUrlSession will continue even if the 

user manually quits the app via the task switcher.

a) True

b) False

Flash Quiz



① A download created through NSUrlSession will continue even if the 

user manually quits the app via the task switcher.

a) True

b) False

Flash Quiz



② How can you copy a file downloaded by NSUrlSession into your app’s 

sandbox?

a) Use File.Copy()

b) Use NSFileManager.Copy()

c) It will be passed as a Stream parameter to 

HandleEventsForBackgroundUrl 

Flash Quiz



② How can you copy a file downloaded by NSUrlSession into your app’s 

sandbox?

a) Use File.Copy()

b) Use NSFileManager.Copy()

c) It will be passed as a Stream parameter to 

HandleEventsForBackgroundUrl 

Flash Quiz



1. Download files even if the app is 

not running

Summary



Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile


