
Download class materials from

university.xamarin.com

Backgrounding: Running

Finite-Length Tasks

IOS210

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2018 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Understand the iOS

Backgrounding Model

2. Work with Finite-Length Tasks

Objectives

Understand the iOS

Backgrounding Model

1. What is an application state?

2. Foreground vs. Background

3. Discuss three ways to execute code

in the background

Tasks

❖ By default, iOS apps do not get CPU time once they are no longer the

foreground app

Motivation

User is ordering a T-shirt1

User presses home

button or switches apps
2

App given a short time

to finish its work (~5 seconds),

then is suspended and gets

no more CPU time

3

When an app is suspended, not only the UI main thread is affected but all threads will be

suspended. Creating a thread will not let you execute code while backgrounded.

❖ An application state is the set of resources currently granted to an app

by iOS (memory, CPU time, event delivery)

What is an application state?

Visible app always receives

CPU time and user events

In memory, but no

CPU time or events

CPU time but no events

(e.g. no user interaction)

❖ An iOS app can be in one of five states

Application states

Not running

Active

Background

Inactive

Suspended

Not yet launched or already terminated

Running but not receiving events

Running normally

Executing code in the background

In memory but not executing code

❖ The application lifecycle defines how an iOS app transitions between

states in response to user actions and system events

What is the application lifecycle?

Not running

Active

BackgroundInactive Suspended

❖ The foreground app is the app the user is currently working with. Only

one app will be in the foreground at any time.

What is the foreground app?

Not running

Active

BackgroundInactive Suspended

Foreground states

❖ A backgrounded app runs code while in the background state. Multiple

applications can be backgrounded at the same time.

What is a backgrounded app?

Not running

Active

BackgroundInactive Suspended

Background state

❖ iOS has three ways for apps to do work in the background

iOS backgrounding options

Finite-Length

Tasks

Any code,

but time limited

Background

Transfers

Data transfer,

not time limited

Long-Running

Tasks

Only for specific tasks,

not time limited

❖ iOS limits what an app can do in the background in order to conserve

battery and dedicate CPU time to the foreground app

iOS backgrounding philosophy

iOS tries to conserve resources since

mobile hardware is optimized for low

power use, not raw performance:

▪ Constrained memory

▪ No swap file

▪ Limited CPU performance

❖ Finite-Length Tasks let you run arbitrary code (i.e. they are not limited to

specific operation types), but you have limited time

Finite-Length Tasks

Foreground

Background

Timer starts Timer expires, no

more CPU time

❖ Long-Running Tasks let you execute specific operations without time

restrictions even if the app is backgrounded

Long-Running Tasks

Only allowed for

these operations

❖ Background Transfer lets you transfer files in a separate process that

continues not only if your app is suspended, but also if it is terminated

Background Transfer

App notified when transfer

completes, even if it was terminated

Flash Quiz

① Which iOS background technique should you use to transfer the

contents of a catalogue of a shopping app in order to support offline

usage?

a) Finite-Length Task

b) Background Transfer

c) Long-Running Task

Flash Quiz

① Which iOS background technique should you use to transfer the

contents of a catalogue of a shopping app in order to support offline

usage?

a) Finite-Length Task

b) Background Transfer

c) Long-Running Task

Flash Quiz

② Which iOS background technique should you use to encrypt and store

user settings when the app gets backgrounded?

a) Finite-Length Task

b) Background Download

c) Long-Running Task

Flash Quiz

② Which iOS background technique should you use to encrypt and store

user settings when the app gets backgrounded?

a) Finite-Length Task

b) Background Download

c) Long-Running Task

Flash Quiz

③ Which iOS background technique should you use to track the device’s

current location?

a) Finite-Length Task

b) Background Download

c) Long-Running Task

Flash Quiz

③ Which iOS background technique should you use to track the device’s

current location?

a) Finite-Length Task

b) Background Download

c) Long-Running Task

Flash Quiz

1. Decide which of the three iOS

backgrounding techniques is

appropriate for your app

Summary

Work with Finite-Length Tasks

1. Integrate a Finite-Length Task with

the Application Lifecycle

2. Wrap a critical operation in a

Finite-Length Task

Tasks

❖ Apps often need to save state when entering the background to

preserve user choices, release expensive resources, etc.

Motivation: Saving State

User is ordering a T-shirt;

when the app moves to

the background, it should

save their choices

❖ AppDelegate notifies you when transitioning between application

states - two methods can be useful for background execution

Lifecycle methods

Not running

Active

Background SuspendedInactive

DidEnterBackground()

WillEnterForeground()

❖ DidEnterBackground must return within ~5 seconds – if it takes any

longer, iOS will terminate the app

Strict time limits

public override void DidEnterBackground(UIApplication app)
{

// Save app state
SaveUserChoices();
...

}

Risky to save app state

like this – what if it takes

longer than expected?

❖ A Finite-Length Task lets you do arbitrary work for a limited time after

your app enters the background (time limit may differ in iOS versions)

What is a Finite-Length Task?

Foreground

Background

App begins a

Finite-Length Task

Timer

starts

Timer

resets

Timer

starts

App ends

their task

❖ Using a Finite-Length Task gives more time (up to a maximum limit) to

complete the operation and involves three stages

Save state with a Finite-Length Task

Begin Finite-

Length Task
Do Work…

End the task or

task expires

❖ API to manage Finite-Length Tasks is provided by UIApplication

Finite-Length Task API

nint BeginBackgroundTask(Action expirationHandler);

void EndBackgroundTask(nint taskId);

double BackgroundTimeRemaining { get; }

Called by iOS just before timer expires,

this is not the work you need to do

Note that even though we are using the term task here, it is not related to the .NET

System.Threading.Task in any way!

❖ Start a task using UIApplication.BeginBackgroundTask method –

this returns a unique task identifier, the timer starts once the app is

backgrounded

Starting a Finite-Length Task

nint taskId = -1;

public override void DidEnterBackground(UIApplication app)
{
taskId = app.BeginBackgroundTask(OnExpiration);
// Save app state
SaveUserChoices();

}

❖ Beginning a Finite-Length Task does not create a thread, app must

create a non UI thread to run the operation

Doing work in the background

nint taskId = -1;
Task myWork;

public override void DidEnterBackground(UIApplication app)
{
taskId = app.BeginBackgroundTask(OnExpiration);
myWork = Task.Run(SaveUserChoices);

}

Start a new thread, then return from DidEnterBackground

❖ Can use the BackgroundTimeRemaining property to get the available

time in seconds once a background task has been registered and the

app is in the background

Checking the remaining time

if (UIApplication.SharedApplication.BackgroundTimeRemaining < 10)
{

... // Not enough time – just end task and return
}

❖ You should end a finite-length task when it has completed or expired

Ending a Finite-Length Task

App moves to

foreground
Task completes Task expires

❖ Should end the task if the application transitions to the foreground; if

app is backgrounded again, task should be registered again

Ending a Finite-Length Task

nint taskId = -1; // -1 means not running (our convention here)
public override void WillEnterForeground(UIApplication app)
{
if (taskId != -1)
{

app.EndBackgroundTask(taskId);
taskId = -1;

}
}

Must pass in the unique

task identifier returned

from the call to
BeginBackgroundTask

❖ If the work completes while the app is backgrounded, it should end the

registered task to turn off the associated iOS timer

Ending a Finite-Length Task

nint taskId = -1;
private void SaveUserChoices()
{
... // persist state (not shown)
if (taskId != -1) {

UIApplication.SharedApplication.EndBackgroundTask(taskId);
taskId = -1;

}
}

❖ When the task timer expires, iOS invokes the expiration callback – this

must end the background task and signals that the application threads

are about to be suspended

Ending a Finite-Length Task

nint taskId = -1;
void OnExpiration() {

UIApplication.SharedApplication.EndBackgroundTask(taskId);
taskId = -1;
...

}

taskId = app.BeginBackgroundTask(OnExpiration);

Integrate a Finite-Length Task with the application lifecycle

Individual Exercise

❖ May need to ensure operations complete even if app gets suspended

Motivation: Finish application work

User clicks on "Buy", should try

to finish the transaction even if

the app moves to background

❖ Typical to wrap a critical operation in a Finite-Length Task to ensure it

will complete even if the app leaves the foreground

Wrap code in a Finite-Length Task

async Task OnBuyShirtAsync()
{
nint taskId = UIApplication.SharedApplication.BeginBackgroundTask(OnExpiration);

await Task.Run(() => SubmitOrder());

UIApplication.SharedApplication.EndBackgroundTask(taskId);
}

void OnExpiration()
{
UIApplication.SharedApplication.EndBackgroundTask(taskId);
taskId = -1;

}

Begin

End (fail,

out of time)

End (success)

❖ Can use .NET CancellationToken to signal that an asynchronous

operation must be terminated

Setting up for cancellation

CancellationTokenSource cts = new CancellationTokenSource();
nint taskId = -1;

async Task OnBuyShirtAsync()
{
this.taskId = UIApplication.SharedApplication.BeginBackgroundTask(
OnExpiration);

await Task.Run(() => SubmitOrder(cts.Token), cts.Token);
UIApplication.SharedApplication.EndBackgroundTask(taskId);

}

Tokens are created by a

TokenSource which can be

used to signal the token

❖ Can use .NET CancellationToken to signal that an asynchronous

operation must be terminated

Setting up for cancellation

CancellationTokenSource cts = new CancellationTokenSource();
nint taskId = -1;

async Task OnBuyShirtAsync()
{
this.taskId = UIApplication.SharedApplication.BeginBackgroundTask(
OnExpiration);

await Task.Run(() => SubmitOrder(cts.Token), cts.Token);
UIApplication.SharedApplication.EndBackgroundTask(taskId);

}

Provide access to the

token so the async worker

can watch for cancellation

❖ Can use .NET CancellationToken to signal that an asynchronous

operation must be terminated

Setting up for cancellation

CancellationTokenSource cts = new CancellationTokenSource();
nint taskId = -1;

async Task OnBuyShirtAsync()
{
this.taskId = UIApplication.SharedApplication.BeginBackgroundTask(
OnExpiration);

await Task.Run(() => SubmitOrder(cts.Token), cts.Token);
UIApplication.SharedApplication.EndBackgroundTask(taskId);

}

Should also pass the token

to Task.Run – this allows

the task to be cancelled if it

has not been started yet

❖ Async code must check the passed token to see if it should stop

Detecting cancellation

void SubmitOrder(CancellationToken token)
{
...
if (token.IsCancellationRequested)
{

// Do cleanup
return;

}
...
token.ThrowIfCancellationRequested();

}

Can check a boolean

flag periodically in your

code and cleanup + exit,

the Task will finish

successfully in this case

❖ Async code must check the passed token to see if it should stop

Detecting cancellation

void SubmitOrder(CancellationToken token)
{
...
if (token.IsCancellationRequested)
{

// Do cleanup
return;

}
...
token.ThrowIfCancellationRequested();

}

can record the task itself as cancelled

by throwing a special exception – this

is raised at the call site as a
OperationCanceledException

❖ Operation can be cancelled by the user, but also by the Finite-Length

Task expiration handler

Signaling cancellation

CancellationTokenSource cts = new CancellationTokenSource();
nint taskId = -1;
...

void OnExpiration()
{

cts.Cancel();
UIApplication.SharedApplication.EndBackgroundTask(taskId);
taskId = -1;

}

Code a cancellable Finite-Length Task

Individual Exercise

Flash Quiz

① The remaining time available for a Finite-Length Task to finish is always

______.

a) 10 minutes

b) 3 minutes

c) different

d) available through UIApplication.BackgroundTimeRemaining
property

Flash Quiz

① The remaining time available for a Finite-Length Task to finish is always

______.

a) 10 minutes

b) 3 minutes

c) different

d) available through UIApplication.BackgroundTimeRemaining
property

Flash Quiz

② Calling UIApplication.BeginBackgroundTask(OnDone)...

[select all that apply]

a) starts a thread and executes OnDone() asynchronously

b) signals the operating system that it should not suspend currently

running threads when backgrounded

c) triggers OnDone() if the available time for background operations

is about to expire

Flash Quiz

② Calling UIApplication.BeginBackgroundTask(OnDone)...

[select all that apply]

a) starts a thread and executes OnDone() asynchronously

b) signals the operating system that it should not suspend currently

running threads when backgrounded

c) triggers OnDone() if the available time for background operations

is about to expire

Flash Quiz

1. Integrate a Finite-Length Task with

the Application Lifecycle

2. Wrap a critical operation in a

Finite-Length Task

Summary

❖ iOS211 continues this topic by

exploring:

▪ Long-Running Tasks without time

limits with Background Modes

▪ Transferring files in the background

More backgrounding is iOS

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

