
Download class materials from

university.xamarin.com

Introduction to

Xamarin.iOS

IOS101

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Introduce the development tools

2. (De)constructing the application

3. Add views and behavior

Objectives

Introduce the development tools

1. Explore the IDE choices

2. Create an app using the project

templates

Tasks

Setup help is provided in the XAM101 orientation class, if you have not setup your

environment yet we highly recommend you attend that class first

❖ You must have the following to build iOS apps:

Reminder: development setup

Mac running macOS with the latest

version of Xcode

Xamarin tools on all your

development machines

(both macOS and Windows)

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRxqFQoTCKn7qvGYhscCFYakHgodzzoAHQ&url=https://www.flickr.com/photos/bfishadow/5189024771&ei=n9i7VemvKobJes_1gOgB&bvm=bv.99261572,d.dmo&psig=AFQjCNHDZay_AHXUaNMAbTlsBb3tiC8-MA&ust=1438460439840032

❖ Xamarin allows you to build iOS applications using C# / .NET with either

Choose your IDE

Microsoft Visual Studio

on Windows

Visual Studio for Mac

on macOS

Create a new application

❖ Visual Studio has project templates to create a new applications for Apple

platforms

iPhone or iPad macOS Apple TV Apple Watch

❖ Project templates provide starting point for different application styles

Choosing an iOS project template

Single

View App

Master-

Detail App

Page-

Based App

WebView

App

Tabbed

App

Gaming

App(s)

❖ Visual Studio includes "Universal"

templates which support iPhone +

iPad in a single app using two

separate views

❖ This is an older set of templates

which have been deprecated by

new support in iOS8 for adaptive

design

Universal application templates

❖ Use the Build menu or toolbar to compile/run the application

Building your application

Both IDEs have shortcut keys to build

❖ Xcode includes a simulator that can run your app on the Mac, this is the

easiest way to test your applications initially

Testing your application

IDEs provide access to the simulator

selection directly on the toolbar

❖ Visual Studio Enterprise includes

the Remoted iOS Simulator

which displays an iOS simulator

on Windows

❖ Multi-touch and pressure-

sensitive interaction

❖ Supports rotation, screenshots,

and location changes

Remoted iOS Simulator for Windows

What about deploying to a device?

❖ To test on a device, you will need to register each

device and get a set of signing certificates from

Apple

❖ Must have a registered developer Apple account

to deploy to a device (can be paid or free)

❖ Watch the lightning lecture on provisioning

an iOS device for testing

Creating and running your first iOS application

Group Exercise

❖ Xamarin.iOS includes both compile-time and runtime components

What is included in Xamarin.iOS?

C#

C# compiler for

Mac

Native compiler

and linker

Runtime services

(GC, type checking,

etc.)

Core .NET

Libraries

1. Explore the IDE choices

2. Create an app using the project

templates

Summary

(De)constructing the application

1. Explore a new project

2. Model-View-Controller

3. Delegates and Protocols

Tasks

Let's explore the created project

❖ The created project is contained in a standard .NET solution and has

several related files that work together to create the application

Source Files

(C#)

UI definitions

(Storyboard + XIB)

Metadata

(property lists)

Explore the created project

Demonstration

Let's explore the created project

❖ IDE loads a solution file (.sln) which contains

one or more project files (.csproj), each

project generates some sort of output –

typically an executable or library

❖ Uses MSBuild-based projects which can be

loaded into either Visual Studio or Visual

Studio for Mac – can switch back and forth

between macOS and Windows if desired

Let's explore the created project

❖ References folder contains required compile

and runtime assemblies

❖ Can add new assemblies through context

menu by right-clicking on the references

folder

❖ Referenced assemblies must either be

compatible portable class libraries (PCLs), or

compiled against Xamarin.iOS – cannot use

desktop .NET assemblies directly

Let's explore the created project

❖ Components folder contains components

downloaded from the Xamarin Component

Store (components.xamarin.com)

❖ Packages folder (only in Visual Studio for

Mac) contains any referenced Nuget

packages (www.nuget.org)

❖ Components/Packages must either be

compiled as a portable library, or against

Xamarin.iOS

http://components.xamarin.com/
http://www.nuget.org)/

Let's explore the created project

❖ Resources folder contains additional assets

needed at runtime such as images

❖ Files in this folder typically have a build action

of BundleResource and are included with

the generated application package to be

installed on a device

❖ Template creates a launch screen displayed

while the app starts

Let's explore the created project

❖ AppDelegate.cs is responsible for creating

the main window and listening to operating

system events

❖ Contains a class implements that derives

from iOS UIApplicationDelegate

❖ Must override virtual methods in class to

process received operating system events

Let's explore the created project

❖ iOS uses property list files to store application

metadata as key/value pairs

▪ Entitlements.plist lists external

Apple services your app wants to interact

with such as in-app purchases, HealthKit

or push notifications

▪ Info.plist identifies app icons, version

number, app name and other app details

❖ Both IDEs include a GUI editor for these files

to edit the most common settings

Let's explore the created project

❖ Main.cs contains the main entry point for

the application in the form of a standard

.NET static void Main()

❖ It starts up the iOS UI framework (UIKit) and

identifies the App Delegate, which will in turn

bring up the initial screen for the application

❖ Be cautious about adding code into the Main
method – iOS has time limits on app

launches!

Let's explore the created project

❖ MainStoryboard.storyboard contains

the declarative (XML) definition of all the

screens in the application (this file is not

present for game-based templates)

❖ Xamarin.iOS includes a built-in designer

integrated into both IDEs, or you can use

Interface Builder in Xcode

❖ Primary storyboard is identified in the
info.plist

Let's explore the created project

❖ (Root)ViewController.cs contains the

behavior for the initial screen, each screen in

your app will have a view controller source

file associated with it

❖ (Root)ViewController.designer.cs is

a partial-class definition used by the designer

to connect elements in the storyboard with

the code defined in the view controller

❖ This follows the MVC design pattern

❖ iOS uses several terms

which might be unfamiliar

or have different meanings

than what you are used to

iOS Terminology

Model View

Controller Delegate

Protocol

❖ Model-View-Controller (MVC) is an

established architectural design

pattern to logically separate the UI,

data and behavior of an app

❖ This is the cornerstone design

pattern for all iOS applications and

it's usage is enforced by the iOS API

design

What is MVC?

Controller

View

Model

❖ The Model contains data, information and logic that is considered part

of the business layer of your application; this is almost all developer-

created

Model

Calculation

Functions

Data Entities
Validation

Logic

Persistence

Logic

Processing

Logic

…

❖ The View contains all the visual components

the user sees and interacts with such as

buttons, sliders and text, all of which derive

from a standard class UIView

❖ Views are composed and can be defined in

code or declaratively using a Storyboard or

XIB file

View

❖ The Controller is the moderator between the model and the view, in iOS

these are classes that derive from UIViewController

Controller

View Model

User

Action

Update data

notify
Update

UI

Controller

iOS provides several implementations of UIViewController to manage different UI

styles and behaviors such as navigation, alerts and tables

❖ The Controller is the moderator between the model and the view, in iOS

these are classes that derive from UIViewController

Controller

View

User

Action
Update

UI

Controller

Model

Model

❖ App must identify a single view controller to be the starting controller

Defining a Root Controller

public class AppDelegate : UIApplicationDelegate
{

public override UIWindow Window { get; set; }

public override bool FinishedLaunching(...) {

...

return true;
}

...

❖ App must identify a single view controller to be the starting controller

Defining a Root Controller

public class AppDelegate : UIApplicationDelegate
{

public override UIWindow Window { get; set; }

public override bool FinishedLaunching(...) {
Window = new UIWindow(UIScreen.MainScreen.Bounds);
...

return true;
}

...

❖ App must identify a single view controller to be the starting controller

Defining a Root Controller

public class AppDelegate : UIApplicationDelegate
{

public override UIWindow Window { get; set; }

public override bool FinishedLaunching(...) {
Window = new UIWindow(UIScreen.MainScreen.Bounds);
Window.RootViewController = new MyViewController();
...
return true;

}
... public class MyViewController

: UIViewController { … }

❖ App must identify a single view controller to be the starting controller

Defining a Root Controller

public class AppDelegate : UIApplicationDelegate
{

public override UIWindow Window { get; set; }

public override bool FinishedLaunching(...) {
Window = new UIWindow(UIScreen.MainScreen.Bounds);
Window.RootViewController = new MyViewController();
Window.MakeKeyAndVisible();
return true;

}
...

Putting it all together

Main()

UIApplication.Main()

calls

parses

Info.plist

Run Loop

starts

FinishedLaunching()

callsAppDelegate

UIApplication

creates

UIWindow RootViewController

creates / assigns

iOS

custom

Add a root view controller to the Tip Calculator app

Individual Exercise

❖ iOS uses a delegation pattern to provide behavior for classes without

derivation

What is a delegate in iOS?

AppDelegate

iO
S

willFinishLaunching

didFinishLaunching

willResignActive

didEnterBackground

willEnterForeground

didBecomeActive

Most often used for

notifications from iOS

to parts of your app Delegate methods

often use the Should,

Will, Did naming

pattern to support

customization and

notification

❖ The operations (messages) a delegate can support are defined by a protocol;

this defines the contract for the delegate and is similar to an interface in C#

What is a protocol?

For example, the native Application Delegate

protocol has an interface definition for C# usage

✓ Like interfaces in .NET – iOS objects can implement (conform) to multiple

protocols and interact with different system services

❖ The operations (messages) a delegate can support are defined by a protocol;

this defines the contract for the delegate and is similar to an interface in C#

What is a protocol?

× … But, unlike interfaces, protocols support optional and static methods which

cannot be defined on an interface

❖ The operations (messages) a delegate can support are defined by a protocol;

this defines the contract for the delegate and is similar to an interface in C#

What is a protocol?

✓ To support this, Xamarin.iOS models

protocols as interfaces + abstract classes

to define the required (abstract) vs.

optional (virtual) methods

❖ The operations (messages) a delegate can support are defined by a protocol;

this defines the contract for the delegate and is similar to an interface in C#

What is a protocol?

Always treat protocols like interfaces: method and property implementations should not

call the base class as it often will not have one and will throw an exception

Flash Quiz

① What file is responsible for creating the window, and listening to

operating system events?

a) ViewController.cs

b) Main.storyboard.cs

c) Main.cs

d) AppDelegate.cs

Flash Quiz

① What file is responsible for creating the window, and listening to

operating system events?

a) ViewController.cs

b) Main.storyboard.cs

c) Main.cs

d) AppDelegate.cs

Flash Quiz

② Visual screens can be created through ___________.

a) Storyboard

b) XIB file

c) Code

d) All of the above

Flash Quiz

② Visual screens can be created through ___________.

a) Storyboard

b) XIB file

c) Code

d) All of the above

Flash Quiz

③ Where can you set application properties such as application name,

icons, and launch images?

a) AssemblyInfo.cs

b) Main.storyboard

c) Info.plist

d) Entitlements.plist

Flash Quiz

③ Where can you set application properties such as application name,

icons, and launch images?

a) AssemblyInfo.cs

b) Main.storyboard

c) Info.plist

d) Entitlements.plist

Flash Quiz

1. Explore a new project

2. Model-View-Controller

3. Delegates and Protocols

Summary

Add views and behavior

1. Create screens

2. Manage parent-child relationships

3. Position views

4. Add behavior

Tasks

❖ Screens can be created in code or through the GUI designer

How do you create screens?

Going to focus the code

approach in this class

cover the iOS designer

in iOS102 and iOS300

Creating screens 101

❖ Screens are created through composition – each screen is defined by a

root parent UIView (superview) with children (subviews) placed at

specific coordinates

❖ The View Controller has a View property which provides access to the

root view for the screen and virtual methods which are called at various

points in the root view's lifetime

Accessing the view

public partial class ViewController : UIViewController
{

...
public override void ViewDidLoad()
{

base.ViewDidLoad();
this.View.BackgroundColor = UIColor.Yellow;

}
}

ViewDidLoad is

called after the view

is created – this is

the place to add

new controls and set

any visual properties

❖ View controller is notified as the root view is loaded, shown and hidden

Big Picture: view lifecycle

ViewDidLoad

ViewWillAppear

ViewDidAppear

ViewWillDisappear

ViewDidDisappear

Method Called when

LoadView Creates the root view

ViewDidLoad View created / loaded

ViewWillAppear View about to be shown

ViewDidAppear View has been rendered

ViewWillDisappear View about to be hidden

ViewDidDisappear View has been hidden

LoadView

❖ Coordinates are specified as resolution-independent floating point

values with (0,0) being the top-left corner of the parent UIView's

location and positive values moving right and down

Coordinates

(0,0)
+x

+y

❖ The position of a child view is decided by several properties

Positioning subviews

Property Definition

Frame This is the rectangle (X, Y, width, height) for the view defined in the coordinate

system of the superview (parent) and decides the overall drawing area that the

view is allowed to render within

Center This is the center point (X,Y) for the view in the superview coordinate system.

Bounds This is the rectangle of the view in it's own coordinate system. Often this is similar

to the frame, however it might not include the space used for margins or shadow

effects applied.

Positioning subviews

❖ Frame defines the view position and size in superview coordinates

superview

3
2
0

480

subview

100

100

(190, 110) Frame:

(190, 110,

100, 100)

Positioning subviews

❖ Center defines the center point of the view in superview coordinates

superview

3
2
0

480

subview

100

100

(240, 160) Center:

(240, 160)

Positioning subviews

❖ Bounds defines the position and size of the view in it's own coordinates

Bounds:

(0, 0,

100, 100)

480

superview

3
2
0

subview

100

100

These positioning properties all normally change the same internal values, so setting the

Bounds + Center is the same as setting the Frame and vice-versa

❖ You will use both Frame and Bounds depending on the context – when

you are positioning the view within the parent, use Frame and when you

are working in the current view coordinates, use Bounds

Setting a view's position in code

public override void ViewDidLoad()
{

nfloat height = View.Bounds.Height; // Current view coordinates
nfloat width = View.Bounds.Width;

var subview = new UIView() {
Frame = new CGRect(width/2-20, height/2-20, 40,40)

};
...

}

Flash Quiz

① When creating a subview, you should set the ______ property to set it's

position and size

a) Center

b) Bounds

c) Frame

d) Rectangle

Flash Quiz

① When creating a subview, you should set the ______ property to set it's

position and size

a) Center

b) Bounds

c) Frame

d) Rectangle

Flash Quiz

② If you change the Center property, the Frame property will also change

a) True

b) False

Flash Quiz

② If you change the Center property, the Frame property will also change

a) True

b) False

Flash Quiz

③ A Frame's (0,0) is always the top-left corner of the screen

a) True

b) False

Flash Quiz

③ A Frame's (0,0) is always the top-left corner of the screen

a) True

b) False

Flash Quiz

❖ iOS defines standard

controls (views) in the

UIKit framework that you

will use when creating

your application screens

❖ These ultimately derive

from UIView; you create

them, set the Frame and

add to a superview to

display it

Controls in iOS

Button Button UIButton

CheckBox CheckBox UISwitch

ComboBox Spinner UIPickerView

Image ImageView UIImageView

Label TextView UILabel

ListBox ListView UITableView

ProgressBar ProgressBar UIProgressView

Slider Slider UISlider

TextBox EditText UITextField

Windows Android iOS

❖ UITextField at the top to

enter the total amount

❖ UIButton to execute the tip

calculation logic

❖ UILabel to display the results

Let's build a Tip Calculator UI

❖ Use UITextField to add edit controls to a screen, automatically

displays an on-screen keyboard when control is tapped

Adding entry fields

UITextField emailEntry = new UITextField() {
Frame = new CGRect(10, 20, View.Bounds.Width - 20, 35),
KeyboardType = UIKeyboardType.EmailAddress,
BorderStyle = UITextBorderStyle.RoundedRect,
Placeholder = "Email Address"

};

❖ Use UIButton to add buttons to a screen – standard button type only

displays title with no border or background color

Adding buttons

UIButton button = new UIButton(UIButtonType.Custom) {
Frame = new CGRect(....),
BackgroundColor = UIColor.FromRGB(0.5f, 0, 0),

};
button.SetTitle("Login", UIControlState.Normal);

Must call method to set the title – can set different text values for different button

states (Normal, Highlighted, Disabled, etc.)

supply the button type to the constructor

❖ Use the UILabel control to add read-only text to a screen

Adding text

UILabel label = new UILabel(new CGRect(190, 110, 100, 35)) {
Text = "This is a label",
TextAlignment = UITextAlignment.Center,
TextColor = UIColor.Blue

};

Frame can be set through

constructor parameter when

creating most UIView types

Properties control appearance

❖ View manages a collection of subviews to display which are rendered in

the order you add them to the collection (bottom-up)

Adding subviews to the screen

public override void ViewDidLoad()
{

...
var label = new UILabel() { ... }
var entry = new UITextField() { ... }
var button = new UIButton() { ... }

View.AddSubview(label); // add one view
// or View.Add(label)

View.AddSubviews(entry, button); // add multiple views
}

❖ UIView is enumerable and supports iterating through the children

Examining subviews

void RemoveAllContent()
{

foreach (UIView subview in View)
{

// Remove from the parent view
subview.RemoveFromSuperview();

}
}

Create the UI for a Tip Calculator

Individual Exercise

❖ Views do not automatically dismiss the keyboard – must resign first

responder status on the active UITextField to hide the keyboard

Keyboard Dismissal

UITextField emailEntry = ...;
...
void HideKeyboard()
{

emailEntry.ResignFirstResponder();
}

Since these are regular .NET events, you can use any .NET technique to handle them,

e.g. a delegate method, anonymous method or lambda expression

❖ Many controls in Xamarin.iOS expose .NET events to provide

interactivity notification, these are mapped on top of the event actions

of the native control

Adding behavior to a screen

button.TouchUpInside += delegate(object sender, EventArgs e)

entry.EditingDidBegin += delegate(object sender, EventArgs e)
entry.ValueChanged += delegate(object sender, EventArgs e)
entry.EditingDidEnd += delegate(object sender, EventArgs e)

❖ UIButton exposes standard control TouchUpInside event to

represent a tap or click – wire up to event in the ViewDidLoad override

to add behavior logic

Wiring up to a button

public override void ViewDidLoad() {
...
button.TouchUpInside += OnLoginButtonClicked;

}

void OnLoginButtonClicked(object sender, EventArgs e) {
... // Do login logic here

}

Add logic to your Tip Calculator

Individual Exercise

1. Create screens

2. Manage parent-child relationships

3. Position views

4. Add behavior

Summary

❖ This class has covered the basics of

iOS development using the

Xamarin tools

❖ The next class, IOS102 covers

building your Views with the iOS

designer

❖ There is a homework assignment

to continue practicing your app

development skills!

Next Steps

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

