
▸ Lecture will begin shortly

▸ Download class materials from

university.xamarin.com

Type Providers

FSC105

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Connect to data sources with type

providers

2. Query and transform data from

type providers

Objectives

Connect to data sources with

type providers

1. Define type providers

2. Explore the benefits of type

providers

3. Describe how to connect to type

providers

Tasks

❖ Consuming external data in a program requires several programmed

steps in C#

Consuming data

Data

source
Open Data

Source

Read

Data

Create

Objects

Consume

Data

Your

Code

C#

Often must use code generation tools such as svcutil.exe, wsdl.exe,

edmgen.exe, etc. to create "code" representation of data

❖ F# Type Providers are an intelligent mechanism to bring in types from

an external data source to your code in a standardized fashion

What is a type provider?

Data

source
Type Provider

Your

Code

F#

What is a type provider?

Type Provider

Design-Time information which

provides intellisense for the data

Provides a compiler extension

Provides static typing for dynamic data

Data

source

Your

Code

Example type providers

powershell Azure Choose your

own adventure Matlab RSS DBML EDMX

SignalR FunScript R Python
MS Dynamics

CRM

World

Bank
Regex

Twitter CSV JSON XML LINQ IKVM
SQL

Server

SQL Server

with EF XAML Hadoop WSDL OData Apiary Facebook

❖ There are available type providers for all kinds of data – it's a thriving

extensibility point for F#

❖ Type providers are DLLs which extend

the name resolution of the compiler

and map data sources into the .NET

type system using schema / metadata

or provided sample information

❖ Supports both synthetic and generative

providers

How does it work?

❖ Type providers enable intellisense and tool tips on the data the type

provider accesses

Tooling

Here we are

consuming SQL data,

with full intellisense of

the schema, even in

the REPL!

❖ Type providers offer two primary benefits, which distinguish F# from

other programming languages

Two major benefits

Simplicity

Performance

Scalability

❖ Type providers do not rely on code

generation to create a data layer

which results in fewer source files

❖ This provides a simpler file structure

because we have less code, which

makes it easier to understand and

work with

Simplicity

❖ Type providers return sequences –

that means they do not create all

objects at once, which increases

scalability and performance

❖ World Bank has > 8000 types which

can be processed

Scalability

100
1000

10,000
100,000

1mil+

1

❖ Since there is no code generation

or compilation requirement, type

providers can be used in the REPL

and scripting environments

Exploring data in the REPL

❖ The F# data library contains the

type providers for CSV, HTML, JSON

and XML file formats. It also

includes a World Bank provider.

F# Data Library

❖ In order to use a type provider you will need a reference to the DLL –

this can often be obtained through Nuget

Using the F# Data type providers

❖ You can connect to type providers in script files using the #r directive,

then must use the open directive to make the types accessible

Type providers in script files

#r "../packages/FSharp.Data.2.1.0/lib/net40/FSharp.Data.dll"

open FSharp.Data
open Fsharp.Net

❖ Syntax for initializing all type providers follows the same general format.

Initializing type providers

#r "../../FSharp.Data.SqlProvider.dll"
open FSharp.Data.Sql
type sql = SqlDataProvider<ConnectionString = "...",

DatabaseVendor = Common.DatabaseProviderTypes.SQLITE,
ResolutionPath = @"/Library/Frameworks/.../mono/4.5/",
UseOptionTypes = false>

Parameters vary based on the providers needs and ability to infer the data shape

type name = providerName<optionalParameters>

❖ In many cases, the schema of the data is known, but for some such as

the CSV provider, it must be inferred or supplied

Example: loading CSV files

#r "../packages/FSharp.Data.2.1.1/lib/net40/FSharp.Data.dll"
open FSharp.Data

type Stocks = CsvProvider<Sample = "data/sampleStockData.csv",
InferRows = 100,
Separators = ";">

Must pass in a file or URL which is then read to figure out the schema by reading

the first 100 rows (can be altered with the InferRows property)

❖ In many cases, the schema of the data is known, but for some such as

the CSV provider, it must be inferred or supplied

Example: loading CSV files

type Stocks = CsvProvider<HasHeaders = false,
Schema = "Date(string),Open(float),

High,Close(float),Volume,Adj,
Close (float)">

Can also supply the schema directly in the form Name(Type) or Name, or just Type
in which case it uses Column1…n

XML and JSON provide work much the same way

❖ Once the type has been created, you must assign a value to the data

representation – this is often done through a specific load method

Loading the data

type SqlConn = SqlDataProvider<ConnectionString, ...>
let ctx = SqlConn.GetDataContext()

[<Literal>]
let Url = "http://ichart.finance.yahoo.com/table.csv?s=APL"
type Stocks = CsvProvider<Url, InferRows=10>
let apple = Stocks.Load(Url)

❖ The loaded data can then be accessed through typed properties, with

full intellisense discovery and compile-time checking

Working with the data

let stocks = Stocks.Load(Url)

for s in stocks.Rows do
printfn "%s Change: %f" s.Date (s.Close - s.Open)

Properties exposed match the metadata

shape of the CSV file

❖ The loaded data can then be accessed through typed properties, with

full intellisense discovery and compile-time checking

Working with the data

let ctx = SqlConn.GetDataContext()

for row in ctx.``[MAIN].[TASKS]`` do
printfn "%s: %b" row.Title row.IsCompleted

Properties exposed match the schema of the table being

queried, initiating the loop causes a SELECT to be issued

Flash Quiz

① Which phrase best describes a type provider?

a) An intelligent mechanism to bring in types from an external data

source to your code

b) An expression which is evaluated on the final line of the function

c) Non-scalable database access

Flash Quiz

① Which phrase best describes a type provider?

a) An intelligent mechanism to bring in types from an external data

source to your code

b) An expression which is evaluated on the final line of the function

c) Non-scalable database access

Flash Quiz

② Which command do you use to get access to a type provider in a script

file?

a) #o

b) #r

c) #t

Flash Quiz

② Which command do you use to get access to a type provider in a script

file?

a) #o

b) #r

c) #t

Flash Quiz

③ Type providers tend to be scalable because they ________

a) Are written in native, machine code

b) Are based on IEnumerable and designed to do lazy evaluation

c) Use parallel processing techniques and multiple cores

d) Are written in C#

Flash Quiz

③ Type providers tend to be scalable because they ________

a) Are written in native, machine code

b) Are based on IEnumerable and designed to do lazy evaluation

c) Use parallel processing techniques and multiple cores

d) Are written in C#

Flash Quiz

Accessing data from the JSON type provider

Individual Exercise

1. Define type providers

2. Explore the benefits of type

providers

3. Describe how to connect to type

providers

Summary

Query and transform data from

type providers

1. Query data sources

2. Explore query operators

3. Run queries

Tasks

❖ Type providers return sequences which allow for mapping, filtering and

pipelining to query and organize the data being returned

Query a data source

let wb = WorldBankData.GetDataContext()

let bigCountries =
wb.Countries
|> Seq.map (fun c -

> (c, c.Indicators.``Population, total``.[2012]))
|> Seq.filter (fun (c,p) -> p > 1000000.)
|> Seq.toList

Get all the countries which had a population > 1M in 2012

❖ Query expressions are a formalized

F# language feature that allow you

to filter, group and transform data

from a sequence

❖ Provide support for LINQ in F#,

almost identical features and syntax

Query Expressions

The expression is contained

within curly brackets{}

query { expression }

❖ The query keyword tells the compiler that you want to filter the data

from the type provider, starts a LINQ query

The query keyword

let filteredIncomeList =
query { for c in wb.Countries do ... }

Query expressions are one of the cases where loops are

useful in F#, because the data is being pulled in as

needed

❖ We use the select operator to identify what data will be returned in a

query expression (projection)

The select keyword

let incomeList =
query {

for c in wb.Countries do
select (c.Name, c.Indicators.``Income share held by lowest 10%``.[2010])

}

return a tuple with the country name and income for the lowest

10% of the population in 2010

❖ We use the where operator to provide a filter expression on the data

The where keyword

let filteredIncomeList =
query {

for c in wb.Countries do
where (not

<| System.Double.IsNaN(
c.Indicators.``Income share held by lowest 10%``.[2010]))

select (c.Name, c.Indicators.``Income share held by lowest 10%``.[2010])
}

Only return countries which have the data we need – notice the not function

being used here to reverse the condition

Operator Description Operator Description

contains Results include specific parameter groupBy Groups elements based on

defined indicators

count Returns the number of selected

elements

join Joins elements

last Selects the last element averageBy Creates an average value for

elements

where Returns element based on

specific criteria

sortBy Sorts elements in ascending

order

Query operators

❖ Query operators allow you to identify what type of data you want, and how

it should be returned

This is a partial list – check the MSDN documentation for a complete reference

❖ Can combine operators together to generate the final result you want

Using query operators

let filteredCountries =
query {

for c in wb.Countries do
where (c.Name.StartsWith("C") && c.Region.Contains("Europe"))
sortByDescending c.Name
select c
skip 1
take 5

}

❖ Once the data has been selected, we can pipe it into a sequencing

operation to execute the query or provide further transformation

Running the query

let filteredIncomeList =
query {

...
} |> Seq.toList

let MinIncomeShare = filteredIncomeList |> Seq.minBy snd
let MaxIncomeShare = filteredIncomeList |> Seq.maxBy snd

val MinIncomeShare : string * float = ("Lesotho", 0.98)
val MaxIncomeShare : string * float = ("Ukraine", 4.42)

Connecting to the World Bank type provider

Individual Exercise

Flash Quiz

① Query expressions enable _________ in F#

a) SQL expressions

b) File I/O

c) Type providers

d) LINQ

Flash Quiz

① Query expressions enable _________ in F#

a) SQL expressions

b) File I/O

c) Type providers

d) LINQ

Flash Quiz

② Which of the following is the correct way to write the function below:

A.|> Seq.filter (fun (x,y) -> not (System.Double.IsNaN(y)))

B.|> Seq.filter (fun (x,y) -> not <| System.Double.IsNaN(y))

a) A is the proper way to write the function

b) B is the proper way to write the function

c) Neither A or B is correct

d) Both are correct

Flash Quiz

② Which of the following is the correct way to write the function below:

A.|> Seq.filter (fun (x,y) -> not (System.Double.IsNaN(y)))

B.|> Seq.filter (fun (x,y) -> not <| System.Double.IsNaN(y))

a) A is the proper way to write the function

b) B is the proper way to write the function

c) Neither A or B is correct

d) Both are correct

Flash Quiz

③ Which statement is true about query expressions?

a) Are triggered using the select keyword

b) Are an example of when loops are useful in F#

c) Allow you to filter but not transform data

Flash Quiz

③ Which statement is true about query expressions?

a) Are triggered using the select keyword

b) Are an example of when loops are useful in F#

c) Allow you to filter but not transform data

Flash Quiz

1. Query data sources

2. Explore query operators

3. Run queries

Summary

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

