
Download class materials from

university.xamarin.com

Introduction to F#

FSC101

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Explain why is F# important

2. Execute F# code in the REPL

3. Working with expressions and

loops

Objectives

Explain why is F# important

1. Outline the history of F#

2. Describe functional programming

3. Define and examine immutability

4. Identify advanced features of F#

5. Evaluate the benefits of using F#

Tasks

❖ F# is a succinct, expressive and efficient hybrid-functional programming

language for the .NET platform

What is F#?

open System
let a = 2
Console.WriteLine a

using System;

namespace CSharpExample
{

class Program
{

public static void Main() {
int a = 2;
Console.WriteLine(a);

}
}

}

F# vs.

C#

History of F#

F# was designed and created by Dr. Don Syme at Microsoft Research Cambridge

with influences from a variety of existing languages, including Scala, OCaml and C#

❖ F# started as an unsupported download but is now fully supported and

included with VS2010 and beyond

Evolution of F#

< 1936 1973 1996 2005 2010 2010 2013 / 2014

Lambda Calculus
(basis of functional

programming)

ML OCaml F#

MSR

F# 3.1

(VS2013 +

Xamarin 3.0)

F#

(VS2010)

F#

(Open Source)

❖ Functional programming is a style of programming that models

computations as the evaluation of expressions while avoiding state

What is Functional Programming?

Func<int,bool> isEvenNumber = n => n % 2 == 0;

var numbers = Enumerable.Range(1, 10);

numbers.Where(isEvenNumber)
.ToList()
.ForEach(Console.WriteLine);

LINQ is an example of functional programming using the C# language

Results are calculated

only on the basis of

input values – no

information is stored

❖ What does this expression mean to a programmer?

❖ How about a mathematician?

Thinking about expressions

X = X + 1

❖ Changing (mutable) data means we cannot accurately predict values

without complete knowledge of what has happened before the current

statement – this directly impacts code optimization

Problems with changing data

int a = 10;
int b = 20;
int c = a * b;

a = 50; should c change?

This style of code can create side-effects and bugs which are hard to identify and

reproduce, which makes them hard to fix

❖ Immutability means that values

cannot be modified once they are

assigned which simplifies our code

and provides three key benefits

What is immutability?

Thread #1

Thread #2

+1

1

+1

+1

0
X

(counter)
2

❖ Mobile applications must remain

responsive – which requires multiple

threads to execute our code

❖ We often create difficult bugs when we

manipulate shared data simultaneously

Parallelization in C#

Three increments occurred,

what should the counter's value be?

❖ F# values are immutable by default –

they cannot be changed once they are

assigned

❖ Unrelated functions executed in parallel

that work on immutable data do not

have to worry about ordering, or

whether one function will change the

result of the other function

❖ This solves the most common bugs we

encounter in asynchronous programming

Parallelization in F#

Thread #1

Both threads start with the same initial

value, but the result is never stored – it is

passed through from one increment into

the next to arrive at the final value

Thread #2

0+1 1+1

0+1 1+1

0
Starting

Value

2

2
1 2

1 2

❖ Immutable data means the JIT

compiler can produce better code

that utilizes more caching

❖ Concurrency is simpler, you don’t

have to worry about using locks to

protect shared data because the

data is always read-only

❖ Parallelization is easier to take

advantage of, that means it is more

likely to be used in more situations

Performance

Integer Float Complex String
0

0.5

1

1.5

2

2.5

3

3.5

F# OCaml Haskell

10M Hash Table Insertions

❖ Pipelining allows operations to be connected together where the output

from one statement becomes the input into the next

Pipelining

Pipelining is a key performance feature because it can process the data concurrently

in out in out in

❖ Data tends to be localized, making

it easier to verify the correctness of

the code

❖ Side effects tend to be minimized

because data is mostly immutable

❖ Language has several key features

to ensure data is used correctly

Predictability

❖ Type Providers provide strongly-typed data from external data sources

which can reduce the amount of code as well as provide type safety

Type Providers

type BankData = Samples.Csv.CsvFile<"bankdata.csv",
InferRows = 10, InferTypes = true, IgnoreErrors = true>

let results = new BankData()

for x in results.Data do
x.

Bank Name
CERT #
City
Closing Date

properties listed come directly from the

comma-delimited file's header line

Bank Name CERT # City Closing Date

Bank of America 12030584 Dallas 2014-09-08

❖ F# can define formal units of measure for

signed numeric types

❖ Helps avoid bugs by ensuring the numeric

type is exactly what is expected and

providing conversions when possible

Units of measure

let speed = 55.0f<mile/hour>
let length = 12.0<cm>
let CmToInches (x : float<cm>) = ...

❖ Discriminated unions provide support for values that can be one of a set

of named cases – similar to an enum in C#, but more powerful

Discriminated unions

Switch has both an

on/off state, as well

as a variable state..

how would you

represent this in

C#?

ON OFF float

DimmerSwitch

Discriminated unions can have zero or

more pieces of named data associated

with them of any type

ProductiveSimple

"Big Picture" benefits to using F#

Declarative Concise

F# is expressive,

which allows you

to implement

algorithms directly,

making the code

easier to read.

Programming

what to do as

opposed to how

to do it results in

less code which is

easier to read

and debug.

Less code to

read, write and

debug leads to

higher levels of

productivity.

Solves problems

without requiring

programmer to

specify exact

procedures.

Flash Quiz

① Immutability means that values cannot be changed once they are

assigned.

a) True

b) False

Flash Quiz

① Immutability means that values cannot be changed once they are

assigned.

a) True

b) False

Flash Quiz

② Functional programming is based on

a) Differential Calculus

b) Lambda Calculus

c) Fractional Calculus

Flash Quiz

② Functional programming is based on

a) Differential Calculus

b) Lambda Calculus

c) Fractional Calculus

Flash Quiz

③ Functional programming is a style of programming that models

computations as the evaluation of expressions while avoiding ____

a) Bugs

b) Class

c) State

Flash Quiz

③ Functional programming is a style of programming that models

computations as the evaluation of expressions while avoiding ____

a) Bugs

b) Class

c) State

Flash Quiz

1. Outline the history of F#

2. Describe functional programming

3. Define and examine immutability

4. Identify advanced features of F#

5. Evaluate the benefits of using F#

Summary

Execute F# code in the REPL

1. Identify the REPL

2. Use the REPL in our IDE

3. Create and display values in F#

Tasks

F# Interactive for F# 3.1 (Open Source
Edition)Freely distributed under the
Apache 2.0 Open Source License
For help type #help;;

> let x = 42;;

val x : int = 42

❖ Read-Evaluate-Print-Loop (REPL) is

a language shell that provides a

simple, interactive programming

environment

❖ Allows developers to explore the

language independent of a

program

What is a REPL?

F# Interactive for F# 3.1 (Open Source
Edition)Freely distributed under the
Apache 2.0 Open Source License
For help type #help;;

> let x = 42;;

val x : int = 42

❖ Visual Studio includes an F# Interactive Console

Using the REPL in our IDE

❖ Assign values, not variables,

variables implies mutability (i.e. it's

variable)

❖ Values cannot be changed once

assigned (by default)

❖ Use the let keyword to assign

named values

Creating values

let x = 10

let y = 20.

let name = “Forest”

let is used to define

values, functions and

modules in F#

❖ F# always returns something for

every evaluated expression

❖ Statements which have no return

value return unit = () which is a

placeholder for "no value" – similar

to void in C#

Return values

> let x = 42
val x : int = 42

> printfn "%i" x
42
val it : unit = ()

❖ Use the built-in printfn function to display a set of statically checked

values and literals to the console or REPL

Display values to the console

printfn "A string: %s, int: %i, float: %f, and bool: %b" "Helen"
42 3.14 true

printfn is very similar to the C-format style strings, but the

values are checked at compile-time for type-safety, you should

prefer this over other approaches like Console.WriteLine

❖ Can reset the REPL to remove all existing values from memory, or clear

the REPL to clear the screen (all values remain)

Resetting the REPL environment

Clear

Can right-click

and select Reset

Reset

Discover the REPL

Individual Exercise

❖ F# supports comments – descriptive statements which are ignored by

the F# compiler, two forms are available: single-line and multi-line

Comments

// single line comments use double-slash like C#
let number = 5 // comments out remainder of line

(* multi-line comments use (* ... *) pair and can have
embedded comments *)

❖ F# is a case-sensitive language

Language Rules – case sensitivity

let name = "Helen" // OK

Let name = "Helen" // Nope, keywords are lowercase

// Three different values defined
let name = "Helen"
let Name = "Mark"
let NAME = "Rachel"

❖ F# does not utilize a statement termination character

Language Rules - Terminators

let number = 42 // no termination character used

No semicolons

Note: F# does not have statement terminators, but the REPL uses a double-semicolon (;;)

to terminate input

❖ F# uses spaces not commas to separate parameters

Language Rules - parameters

let number = (new System.Random()).Next()
let name = "Helen"

printfn "Hi %s your lucky number is %i" name number

use parenthesis to surround expressions to evaluate – for example to pass the result

of the expression as a parameter, or to call a subsequent method on the result

parameter #1

parameter #2

❖ Multiline statements use spaces, not braces or tabs to denote a block

Language Rules – multiline statements

let evens nums =
let isEven x = x%2 = 0
List.filter isEven nums

Define a new function named evens which takes

a list and returns the even values – notice we

have no braces, but the statements for the

function are indented under the let definition

with one or more spaces

List<int> evens(List<int> nums)
{
Func<int,bool> isEven = x => x%2 == 0;
return nums.Where(isEven).ToList();

}

C#

❖ F# will give errors when columns are not aligned properly

Aligning indentations

let x =
let a = 1
let b = 1

a+b
Column is

misaligned

let x =
let a = 1
let b = 1
a+b

❖ F# supports the .NET Common

Type System (CTS), which means

you have all the same basic types

you use today in C#, plus a few

extra

❖ F# does not explicitly declare the

type – it is always inferred from the

initialization, which means it must

always be initialized

Available types

let name = "Molly"

let favoriteNumber = 3

string name = "Molly";

int favoriteNumber = 3;

C#

F#

❖ F# infers the type of values automatically from the surrounding

information

Type Inference

let y = 7
val y : int

F# infers that the

value is an integer

based on the

assignment

let y = 7
let square x = x*x;;
val y : int
val square : x:int -> int

F# assumes you will

pass an integer into the

function automatically

❖ F# infers the type of values automatically from the surrounding information

Type Inference

let y = 2.
let square x = x*x
square y

val y : float = 2.0
val square : x:float -> float
val it : float = 4.0

Now, F# sees you will pass a float into the function and

changes the type automatically

❖ Sometimes type inference can't fully determine the type

Type annotations

type Person (name) =
member this.SayHi = printfn "Hi %s" name

module Test =
let sayHellos list =

List.iter (fun (x) -> x.SayHi) list
sayHellos [new Person("you"); new Person("me");]

Error FS0072: Lookup on object of indeterminate type based on information prior to this program point. A

type annotation may be needed prior to this program point to constrain the type of the object. This may

allow the lookup to be resolved. (FS0072)

x.SayHi

❖ This can be fixed by annotating or constraining the type for the compiler

Type annotations

type Person (name) =
member this.SayHi = printfn "Hi %s" name

module Test =
let sayHellos list =

List.iter (fun (x : Person) -> x.SayHi) list
sayHellos [new Person("you"); new Person("me");]

❖ Numeric types depend on the suffix of the number to infer the type

Type Comparison (C# > F#)

C# keyword F# Assignment

int 32

double 32.

float 32.f

BigInt 32.i

long 4l

ulong 4ul

C# keyword F# Assignment

short 4s

ushort 4us

sbyte 4y

byte 4uy

string "text value"

❖ Math operators (and precedence) is similar to C#

Math Operators

Op Purpose

+ Addition

- Subtraction

* Multiplication

/ Division

% Integer modulo

** Exponent

Op Purpose

< Less than

<= Less than or equal

> Greater than

>= Greater than or equal

= Equal (comparison)

<> Not equal

Op Purpose

|| Boolean OR

&& Boolean AND

&&& Bitwise AND

||| Bitwise OR

^^^ Bitwise XOR

~~~ Bitwise NOT



❖ F# can support mutable data when 

the mutable keyword is applied

❖ Mutability is an explicit decision and 

should be avoided if possible, but 

might be required in special cases, 

such as interacting with C# code

Working with mutable data

let mutable x = 5

x <- 10

mutable values can be changed 

using the assignment operator



Working with immutable and mutable values in the F# REPL

Individual Exercise



Flash Quiz



① Use the keyword ______ to specify a value that can be changed.

a) alter

b) let

c) mutable

Flash Quiz



① Use the keyword ______ to specify a value that can be changed.

a) alter

b) let

c) mutable

Flash Quiz



② F# types are not______, they are _______.

a) declared, inferred

b) inferred, declared

Flash Quiz



② F# types are not______, they are _______.

a) declared, inferred

b) inferred, declared

Flash Quiz



③ printfn can be used to display ___________.

a) a single value and a string

b) any number of formatted values and strings

c) a Console.WriteLine type of formatted string 

Flash Quiz



③ printfn can be used to display ___________.

a) a single value and a string

b) any number of formatted values and strings

c) a Console.WriteLine type of formatted string

Flash Quiz



1. What is a REPL?

2. Using the REPL in our IDE

3. Create and display values in F#

Summary

F# Interactive for F# 3.1 (Open Source 
Edition)Freely distributed under the 
Apache 2.0 Open Source License
For help type #help;;

> let x = 42;;

val x : int = 42



Working with expressions and loops



1. Explore basic F# syntax

2. Illustrate expressions

3. Identify loops in F#

Tasks

F# Interactive for F# 3.1 (Open Source 
Edition)Freely distributed under the 
Apache 2.0 Open Source License
For help type #help;;

> let x = 42;;

val x : int = 42



❖ Nearly everything in F# provides some result value, which makes almost 

everything an expression

Expressions in F#

type Product (name, price, onSale) =
let isFree = price = 0.0
member this.Name = name
member this.IsFree = isFree
member this.SalePrice = if onSale && price <> 0.

then price/2.
else price

The if statement is actually an expression that returns a value – which is being 

assigned to a property



❖ if-then-else is an expression, not a statement and all expressions 

return a value

Conditional expressions

let greeting = if gender = "m" then "Mr." else "Ms."

let evaluate myArray =
if Array.isEmpty myArray then

printfn "Oh no, empty!"
elif Array.length myArray > 10 then

printfn "Array too long!"

if expr then statement else statement



❖ When you create F# programs, you are often combining functions and 

expressions together to generate a final result, the pipe operator makes 

this very easy to do without creating temporary intermediate values

Chaining functions together

let randNums count =
let rng = new System.Random()
List.init count (fun _ -> rng.NextDouble() * Math.PI * 2)

randNums 200
|> List.average // Average all the numbers
|> System.Math.Sin // Get the Sin(avg)
|> printfn "Average sin: %f"      // Output the value



❖ F# has three explicit loop styles which parallel C# loops

Three kinds of loops

for-in-do
(foreach)

for-to-do
(for)

while-do
(while)

Note: F# has a set of list and sequence functions which can be used in place of explicit 

loops, you will see these functions and how to use them in a future module



❖ for-in-do is the same as foreach in C# and is the most commonly 

used loop in F#

for-in-do

for i in [1..10] do
printfn "%d" i

1
2
3
...
9
10

loop executes over set of numbers 

and outputs each to the console 

and returns unit = ()

for val in enumerable do something



❖ All loop expressions must return unit, there is no way to return a value 

from inside a loop, this often causes a warning to be produced when 

the final expression in the loop block returns a value

Unit constraint on loops

let n =
for f in [10..100] do
f + f

warning FS0020: This expression should have type 'unit', but has type 'int'. Use 

'ignore' to discard the result of the expression, or 'let' to bind the result to a 

name.

returns an 

integer value



❖ To fix this you need to add |> ignore at the end of the expression

Unit constraint on all loops

let n =
for f in [10..100] do
f + f |> ignore

|> ignore tells the compiler to ignore the return 

value and gets rid of the unit warning



❖ for-to-do has the same functionality as a for statement in C# 

for-to-do 

for val = start to finish do something

let counter() =
for f = 1 to 10 do

printf "%i " f
printfn ""

...
counter()

1 2 3 4 5 6 7 8 9 10

creates function to 

print out 1 to 10 with a 

blank line at the end



❖ while-do is similar to the while loop in C#

while-do

let nums = [|1.0..10.0|]   // double[]

let mutable i = 0
while i < nums.Length do

nums.[i] <- nums.[i] ** nums.[i]  // pow
i <- i + 1

for v in nums do
printfn "%f" v

while condition do something



❖ No do-while style loop available

❖ No ability to break or continue –

prefer sequences or lists if you need 

this behavior

❖ for-to-do loops only support 

integers and can only increment by 

one, can use for-in-do instead

Missing features

Restrictions

May Apply



Flash Quiz



① The for-in-do loop is similar to the ______ C# loop

a) for

b) foreach

c) do-while

d) None of the above

Flash Quiz



① The for-in-do loop is similar to the ______ C# loop

a) for

b) foreach

c) do-while

d) None of the above

Flash Quiz



② Conditional statements and loops return values in F#, True or False?

a) True

b) False 

Flash Quiz



② Conditional statements and loops return values in F#, True or False?

a) True

b) False 

Flash Quiz



③ To ignore a return value from an expression you would use:

a) <| Ignore

b) < ignore

c) > ignore

d) |> ignore

Flash Quiz



③ To ignore a return value from an expression you would use:

a) <| Ignore

b) < ignore

c) > ignore

d) |> ignore

Flash Quiz



1. Explore basic F# syntax

2. Illustrate expressions

3. Identify loops in F#

Summary

F# Interactive for F# 3.1 (Open Source 
Edition)Freely distributed under the 
Apache 2.0 Open Source License
For help type #help;;

> let x = 42;;

val x : int = 42



❖ You now have some basic 

knowledge of the history and usage 

of the F# programming language

❖ In the next course, we will look at 

how to manage solutions and 

projects in F# which has some 

surprising differences from C#!

Where are we going from here?



Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile


