
Download class materials from

university.xamarin.com

Data Caching and

Synchronization

ENT410

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Determine your Connectivity

Strategy

2. Cache Results from a Server

3. Synchronize to a Remote Server

4. Evaluate Data Sync Tools

Objectives

Determine your Connectivity Strategy

1. Make your network calls more

resilient

2. Choose a suitable data strategy for

your mobile application

Tasks

❖ Connection failure is common

on phones; you must program

defensively around all network-

access code

Motivation

Airplane mode turned on, signal lost, etc.

❖ Users of modern apps expect

a rich offline experience

User expectations

Most standard iOS

apps work offline

although some offer

reduced functionality

❖ Your app should test for

connectivity before beginning

any network operation

Connectivity testing

Is a connection available?

?

❖ Each platform has unique APIs to detect, monitor, and work with

networking hardware

Platform connectivity APIs

iOS Android Windows

You can use the

platform APIs;

however, it can

mean writing

similar code

multiple times

❖ There are cross-platform plugins that let you test connectivity from your

shared code

Cross-platform connectivity APIs

See https://github.com/jamesmontemagno/Xamarin.Plugins/tree/master/Connectivity

iOS Android Windows

Cross-platform abstraction

Your code

https://github.com/jamesmontemagno/Xamarin.Plugins/tree/master/Connectivity

❖ Networked applications generally use one of three strategies for data

management

Networking strategies

Online with

offline editing

Online with an

offline cache
Online only

❖ Some apps can only function when an active network connection is

available

Online-only apps

Apps like messaging,

VOIP, or online banking

require a connection

❖ Inform the user when the application is offline and unable to retrieve

data so they know the full functionality is unavailable

User notification

1. Make your network calls more

resilient

2. Choose a suitable data strategy for

your mobile application

Summary

Cache Server Results

1. Cache your data by saving network

requests to the device database

Tasks

❖ Data caching is storing the results of network calls locally on the device

What is data caching?

Create a local copy

of the remote data

Remote

Data

Cache

❖ A local SQLite database is a common caching mechanism but other

techniques such as flat files can work well

How to implement a cache

JSON

SQLite

XML

❖ You should cache data that has a long lifespan – do not cache data that

changes frequently

What data to cache

Good Bad

▪ Static data such as locations

▪ Information that will be accessed

frequently that may have a timeout

assigned

▪ Frequently changed data such as

weather or bank balances

▪ Time sensitive information

❖ Cache data as soon as you obtain it so that it is available even if you

lose connectivity or the user starts your app while offline

When to cache?

Remote

Data

Cache

Immediately cache results

from every network call

Cache results

❖ Always populate your UI from cache – this makes it simple and seamless

to continue working while offline

When to used cached data

Remote

Data

Cache

Load UI only

from cache

Refresh UI

Cache results

❖ You should purge data from the cache when it is no longer useful – how

often to do this is highly data-dependent

Time-to-live policy

Cache

❖ Refresh the data in the local cache from the remote server when it is

available and have the UI view the information from the cache

Coding offline support

async Task<IList<Job>> LoadPageFromNetwork()
{

// Get the data from our service
var service = new JobDataService();
var data = await service.GetJobsForSearch(LastSearch, CurrentPage);
...
// Store the jobs in the local database for online/offline use
await App.DataManager.CoreDatabase.StoreJobs(data);
return data;

}

❖ Assets such as images, video, audio, etc. are good candidates for

caching because they tend to be static and take time to download

Caching assets

Cache

❖ Xamarin.Forms UriImageSource automatically caches images – by

default images are cached for 1 day

Xamarin.Forms cache support

Stored locally on

device (storage

location varies by

platform)

❖ You can extend the default cache time for UriImageSource

Caching assets

public class ImageCacheConverter : IValueConverter
{

public int DaysToCache { get; set; } = 30;
public object Convert (object value, Type targetType, object parameter,

CultureInfo culture)
{

return new UriImageSource {
Uri = new Uri(value.ToString ()),
CachingEnabled = true,
CacheValidity = new TimeSpan(DaysToCache, 0, 0, 0, 0)

};
}
...

}

❖ Microsoft and Apple will test your app in airplane mode during the

review process, ensure your application handles this transition gracefully

Store review process

❖ Test your applications where the network connectivity is poor or

intermittent such as moving such as trains, subways, and tunnels

Recommended testing scenarios

! ! 4G

Unreliable

network

Flight

mode

Switching between

networks

Reliable

networks

❖ The XCode Additional tools let you simulate conditions such as 3G, 4G,

LTE or even on a network that drops 100% of the packets

Testing on iOS simulators

❖ Enabling developer mode on an iOS device lets you run the Network

Link conditioner directly on the device

Testing on iOS devices

❖ Android emulators perform close to the native platform so you can use

the regular OS features to perform several network tests

Testing on Android emulators

Toggle

network

state

Toggle

flight

mode

❖ Windows simulator lets you toggle the network state

Testing on Windows emulators

Tap the

Double Arrow

Enable Network

Simulation and

change the

speed & strength

Caching Downloaded Data

Individual Exercise

1. Cache your data by saving network

requests to the device database

Summary

Synchronize to a Remote Server

1. Discuss patterns for offline

editing synchronization

2. Examine challenges with

Synchronization

Tasks

Best Practices

❖ There are many situations where the ability to work offline will increase

user productivity and therefore increase their satisfaction with your app

Motivation

Location-based

information
Offline analysisData collection

❖ Data Synchronization is the ability to make data changes on a local

device and then merge the changes to a remote ‘source of truth’

What is Data Synchronization?

Goal is for these two systems to appear to have identical data

Remote

Data

Cache

❖ Having control of both the client and server is needed to do sync well –

this course will show code on both sides

Sync requires client and server code

Xamarin.iOS

Xamarin.Android

Windows

Web Api

ASMX

WCF

Service Stack

❖ Most networked application will use either a server based approach to

data, a local cache of the data or the ability to work offline with both

Offline editing and synchronization

Remote

Data

Make requests

for Remote Data

Retrieve new data

and update server

❖ Most networked application will use either a server based approach to

data, a local cache of the data or the ability to work offline with both

Offline editing and synchronization

Remote

Data

Push updates and

request changes >

< Get ids and conflicts

Retrieve new data

and update server

❖ Most networked application will use either a server based approach to

data, a local cache of the data or the ability to work offline with both

Offline editing and synchronization

Remote

Data

Push updates and

request changes >

< Get ids and conflictsLocal Data

Store data locally with record-

level version information

Retrieve new data

and update server

❖ Most networked application will use either a server based approach to

data, a local cache of the data or the ability to work offline with both

Offline editing and synchronization

Remote

Data

Retrieve new data

and update server

Local Data

Store data locally with record-

level version information

Local data is used for caching

data and syncing local edits

to a server

Get local changes to

send to the cloud

Push updates and

request changes >

< Get ids and conflicts

❖ Most networked application will use either a server based approach to

data, a local cache of the data or the ability to work offline with both

Offline editing and synchronization

Remote

Data

Retrieve new data

and update server

Local Data

Store data locally with record-

level version information

Local data is used for caching

data and syncing local edits

to a server

Get local changes to

send to the cloud

Push the changes back

❖ Most networked application will use either a server based approach to

data, a local cache of the data or the ability to work offline with both

Offline editing and synchronization

Remote

Data

Retrieve new data

and update server

Local Data

Store data locally with record-

level version information

Local data is used for caching

data and syncing local edits

to a server

Get local changes to

send to the cloud

Handle conflict data

and present options to

the user

Managing local data synching & conflict resolution significantly increases app complexity.

❖ Each business object should have its own entity - the class should

represent the core information that you want to communicate between

the server and the client

Creating objects to sync

public class Customer
{

public int Id { get; set; }
public string Name { get; set; }
public string Email { get; set; }
public string Phone { get; set; }
public string Notes { get; set; }
public string[] Addresses { get; set; }

}

Define these classes

in a separate PCL so

they can be shared

between the mobile

app and Web Server

❖ Reuse model assemblies between the server and mobile clients to assist

serialization and deserialization

Reuse model classes

Create the model

classes as a PCL

Reference the PCL from

the Mobile Apps [

Reference the PCL from

the WebApi project

❖ When the remote server is not available you'll need to store a local

primary key so when the server is eventually inserted you can map the

generated primary to the local copy

Challenge: Inserting offline records

public class Customer
{

public int Id { get; set; }
public string Name { get; set; }
public string Email { get; set; }
...

public string CorrelationId { get; set; }
}

CorrelationId is

used for offline

inserts

Id is the primary

key on the server

❖ When two devices have a local copy of the record and one applies an

update to the record and the other device attempts to update the

server, the second will be updating from a previous version

Challenge: Updating records

public class Customer
{

public int Id { get; set; }
public string Name { get; set; }
public string Email { get; set; }
...

public int VersionNumber { get; set; }
}

Version number

is used to ensure you

update the version of

record you have been

editing or

report a conflict

❖ When deleting records you should store the fact that a local record has

been deleted, so synchronization will remove the record on the server

Challenge: Deleting records

public class Customer
{

public int Id { get; set; }
public string Name { get; set; }
public string Email { get; set; }
...

public int VersionNumber { get; set; }
public bool IsDeleted { get; set; }

}

The local deleted

record and version

number is used to

tell the server what to

remove when syncing

❖ When update or delete conflicts occur you'll need to display the

information about the records in conflict and also the timing details

Challenge: Handling conflicts

public class Customer
{

public int Id { get; set; }
public string Name { get; set; }
public string Email { get; set; }
...

public DateTime CreateDateTime { get; set; }
public DateTime LastUpdateDateTime { get; set; }
public DateTime DeletedDateTime { get; set; }

}

This information is

used to display

timing information

about the conflict

Hint: use UTC for your records, so the server matches the clients

Updates during sync

❖ Deletes and updates from other devices/users should be retrieved also

Challenge: Changes from others

Web or Mobile App Service Deletes and Updated

Records could be

retrieved during sync

Deletes during sync

❖ All this information is common to objects that will be synchronized, so it

can be put in a base class

Structure your sync

public class SyncObject
{

public int Id { get; set; }
public int VersionNumber { get; set; }

public DateTime CreateDateTime { get; set; }
public DateTime LastUpdateDateTime { get; set; }
public DateTime DeletedDateTime { get; set; }

public bool IsDeleted { get; set; }
public string CorrelationId { get; set; }

}

Update only the

version you edit
Store dates

for later

conflict display

CorrelationId is

used for offline

inserts

Use as a base

class

❖ The customer then becomes an extension of a class with

synchronization capability

Structure your sync

Entity objects become simpler and focus only on their data requirements

public class Customer : SyncObject
{

public string Name { get; set; }
public string Email { get; set; }
public string Phone { get; set; }
public string Notes { get; set; }
public string[] Addresses { get; set; }

}

❖ On the server side, it is helpful to have an abstract capability to receive

and process updates

Processing sync updates

public class BaseServerSync<T> where T : SyncObject
{

public virtual Task<T> GetItemAsync (T item);
public virtual Task<int> InsertAsync (T item);
public virtual Task UpdateAsync (T item);
public virtual Task DeleteAsync (T item);
...

}

Need the ability to

receive and process

single items against

a data store

❖ On the server side, it is helpful to have an abstract capability to receive

and process updates

Processing sync updates

public class BaseServerSync<T> where T : SyncObject
{

...
public virtual Task AuditAsync (AuditAction action, T item);
protected virtual Task SetupAsync ();
protected virtual Task CommitAsync ();
protected virtual Task RollbackAsync ();

public virtual Task<SyncResult<T>> ProcessAsync (
IEnumerable<T> items, bool forceChanges = false);

}

❖ Implement a custom subclass of sync to BaseServerSync to update an

SyncObject so that changes can be applied

Processing sync updates

public class CustomerDataSync : BaseServerSync<Customer>
{
...

}

❖ Can use a WebApi method to receive changes from a client

Processing sync updates

public class CustomersController : ApiController
{

public CustomerDataSync _sync = new CustomerDataSync();

public IEnumerable<Customer> Get() {
return _sync.GetCustomers();

}

public SyncResult<Customer> Post([FromBody] Customer[] customers) {
return _sync.Process(customers);

}
...

}
WebApi is not a required mechanism, but it is a good mechanism for sharing the model

code between the server and the mobile clients

❖ Send changes to the server and receive sync details

Connecting from the local data

public async Task<SyncResult<Customer>> SyncData(List<Customer> items,
bool forceChanges = false)

{
using (var client = CreateRestClient())
{

string postBody = await JsonConvert.SerializeObjectAsync(items.ToArray());
HttpResponseMessage getDataResponse;
if (!forceChanges) {

getDataResponse = await client.PostAsync ("",
new StringContent (postBody, Encoding.UTF8, "application/json"));

} else {
getDataResponse = await client.PutAsync ("",

new StringContent (postBody, Encoding.UTF8, "application/json"));
}

❖ Send receive changes between the server and the client.

Connecting from the local data

if (!getDataResponse.IsSuccessStatusCode)
throw new CouldNotConnectException ();

// Retrieve the JSON response
jsonResponse = await getDataResponse.Content.ReadAsStringAsync()

.ConfigureAwait(false);
}

if (string.IsNullOrEmpty(jsonResponse))
return null;

return await Task.Factory.StartNew(() =>
JsonConvert.DeserializeObject<SyncResult<Customer>>(jsonResponse))

.ConfigureAwait(false);

❖ For iOS use Background Fetch mode to sync changes, even while the

app is not running, can also use long running tasks

Platform-specific syncing

public override void PerformFetch (UIApplication application,
Action<UIBackgroundFetchResult> completionHandler)

{
try {

var hasMoreData = await PerformSync();
completionHandler(hasMoreData ? UIBackgroundFetchResult.NewData

: UIBackgroundFetchResult.NoData);
} catch {

completionHandler(UIBackgroundFetchResult.Failed);
}

}

❖ For Android, ensure that synching is done via a Background service as

the operations may take some time.

Platform considerations

Hybrid Service

performs

sync/download

❖ For Android, ensure that synching is done via a Background service as

the operations may take some time.

Platform Considerations

Remote

Data

Hybrid Service

performs

sync/download

Retrieve Data, Identifiers &

Conflict details Push changes

❖ For Android, ensure that synching is done via a Background service as

the operations may take some time.

Platform Considerations

Remote

Data

Local

Data

Hybrid Service

performs

sync/download

Retrieve Data, Identifiers &

Conflict details Push changes

Store the changes to the

local data via the service

❖ For Android, ensure that synching is done via a Background service as

the operations may take some time.

Platform-specific syncing

Remote

Data

Local

Data

Hybrid Service

performs

sync/download

Retrieve Data, Identifiers &

Conflict details Push changes

Store the changes to the

local data via the service

Display the UI

from the local

cache

❖ For Android, ensure that synching is done via a Background service as

the operations may take some time.

Platform-specific syncing

Remote

Data

Local

Data

Hybrid Service

performs

sync/download

Retrieve Data, Identifiers &

Conflict details Push changes

Store the changes to the

local data via the service

Display the UI

from the local

cache

Store any offline edits locally

❖ For Android, ensure that synching is done via a Background service as

the operations may take some time.

Platform-specific syncing

Remote

Data

Local

Data

Hybrid Service

performs

sync/download

Store the changes to the

local data via the service

Display the UI

from the local

cache

Merge changes back to

the service via the

Background Service

Store any offline edits locally

❖ There are two core conflicts that can occur, where users are updating

the same record or where a user is updating a deleted record

Handling conflicts

Customer

Version: 1

Customer

Version: 1

When updating/deleting the same

record what happens?

❖ When multiple users are editing the same record, who/what decides on

which edit should be made

Handling update conflicts

Customer

Version: 1

Customer

Version: 2

Where one record has changed, bring

down both records and let the user

decide and audit the result

❖ When a user is updating a deleted record, what happens?

Handling delete conflicts

Customer

Version: 1

Customer

Version: 1

Deleted

Inform the user that the delete has

happened and encourage them to

resynchronize their data

A coded offline synchronization mechanism

Demonstration

Flash Quiz

① What are some of the challenges of synchronizing local offline data

remotely (Choose all that apply)

a) Lack of network connectivity

b) No local stored procedures

c) Creating identifiers to insert

d) Handling conflicts between devices updating

e) All of the above

Flash Quiz

① What are some of the challenges of synchronizing local offline data

remotely (Choose all that apply)

a) Lack of network connectivity

b) No local stored procedures

c) Creating identifiers to insert

d) Handling conflicts between devices updating

e) All of the above

Flash Quiz

② If you have offline editing capability, you don’t need to warn users that

there is no connection

a) True

b) False

Flash Quiz

② If you have offline editing capability, you don’t need to warn users that

there is no connection

a) True

b) False

Flash Quiz

③ When handling conflicts between two devices/users who have updated

the record, you should:

a) Make the last update win

b) Display the two results and let the user decide

c) It depends on the business rules of the synchronization system

d) Make sure the records version numbers are the same

Flash Quiz

③ When handling conflicts between two devices/users who have updated

the record, you should:

a) Make the last update win

b) Display the two results and let the user decide

c) It depends on the business rules of the synchronization system

d) Make sure the records version numbers are the same

Flash Quiz

1. Discuss patterns for offline

editing synchronization

2. Examine challenges with

Synchronization

Tasks

Evaluate data sync tools

1. Evaluate third-party options

Tasks

❖ There is a significant amount of time writing, testing, deploying and

managing a synchronized mechanism.

Data sync code cost

Enterprises may be affected

by opportunity cost

losses by being late to market

Time to develop a sync capability

maybe too large

The risk of new development

maybe too high

Coding your own sync

gives you significantly

more control.

❖ Writing Synchronization code is difficult and complex. If you can find a

third-party offering you may complete your project sooner

Making pragmatic choices

Azure Mobile Apps Couchbase Zumero

You should always evaluate tools for suitability in your specific project

https://www.google.ca/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwjhnuKut7LPAhUB1GMKHZnIDtoQjRwIBw&url=https://azure.microsoft.com/en-us/services/app-service/mobile/&psig=AFQjCNGzOiQMbgz2_GQThgY2jMstYA9stg&ust=1475164804834356

❖ Azure Mobile Apps are a component of Azure App Service, which is a

highly scalable mobile development platform that greatly simplify data

caching and synchronization

Azure Mobile Apps

Broad mobile platform

support including

Windows, iOS, Android

and Xamarin.Forms

For more information – checkout the Azure classes in Xamarin University

❖ Couchbase is a NoSQL-based data that by defaults supports replication

between systems, including mobile devices through their SyncGateway

tool

Couchbase

Couchbase

Lite

Couchbase

Lite

Sync

Gateway

Couchbase

Server

Couchbase

Server

Couchbase

Server

Replication

❖ Has very powerful replication support between the systems which

almost feels like real-time communication

Couchbase

Pros Cons

▪ Very quick/powerful replication

▪ LiveUpdates can be hooked into

ViewModels which makes it good for

Xamarin.Forms

▪ Requires a long setup process to begin

working

▪ Requires understanding of NoSQL

techniques such as map reduce

▪ Works best for Greenfields projects

A high-quality example of a Couchbase Xamarin.Forms app with Data Synchronization

can be found at https://github.com/FireflyLogic/couchbase-connect-14

https://github.com/FireflyLogic/couchbase-connect-14

❖ SQL based Synching between a mobile application and a customer

system

Zumero

Sqlite

Sqlite

Zumero

Server

MS SQL

Server

MSSQL is a popular backend

for .NET developers

Ships with tooling to

generate projects in Xamarin

1. Evaluate third-party options

Summary

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

