
Download class materials from

university.xamarin.com

Using the Xamarin

Salesforce Component

ENT302

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Implement an external app and

authenticate a user

2. Perform CRUD operations on a

Standard Object

3. Create a custom SObject

4. Perform a Search

Objectives

Implement an external app and

authenticate a user

1. Add the Salesforce Component

2. Create a SalesforceClient

3. Display the login UI

Tasks

❖ The Salesforce Component is a library that wraps the Salesforce APIs

What is the Salesforce Component?

Supports iOS

and Android

Gives convenient

access to Salesforce

from Xamarin projects

❖ Add the Salesforce Component to your iOS and Android projects

How to add the Salesforce Component

iOS

Cannot add to shared

projects or PCLs
Android

❖ SalesforceClient is a class in the Salesforce Component that wraps

the Salesforce Authentication and REST APIs

What is SalesforceClient?

Salesforce

External App

Authenticate users

REST operations

SalesforceClient

❖ SalesforceClient performs the OAuth 2.0 User-Agent Flow for you

so it needs your app’s identity and callback

SalesforceClient constructor

string ClientKey = "...";
string ClientSecret = "...";
Uri CallbackUrl = new Uri("...");

var client = new SalesforceClient(ClientKey, ClientSecret, CallbackUrl);

The values used here must match the values stored

on the Salesforce server for your Connected App,

ClientKey and CallbackUrl are used for initial

authentication, ClientSecret is used for refresh

❖ SalesforceClient creates a login UI for you, your code needs to

display it to the user

SalesforceClient login UI

Activity context;
SalesforceClient client;
// ...
var intent = (Intent)client.GetLoginInterface();
context.StartActivity(intent);

UIViewController rootController;
SalesforceClient client;
// ...
var controller = (UIViewController)client.GetLoginInterface();
var navController = new UINavigationController(controller);
rootController.PresentViewController(navController, true, null);

Returns a
ViewController

on iOS

Returns an

Intent on

Android

❖ Displaying the login UI begins the OAuth sequence

SalesforceClient OAuth UI

User credentials sent

directly to Salesforce

and are not available

to your app

❖ SalesforceClient raises an event when the user has completed

authentication, the event args contain the user’s account info

SalesforceClient Complete event

Success?

SalesforceClient client;
// ...
client.AuthenticationComplete += OnComplete;

void OnComplete(object sender, AuthenticatorCompletedEventArgs e)
{

if (e.IsAuthenticated)
{

ISalesforceUser user = e.Account;
// ...

}
}

User info

❖ ISalesforceUser represents an authenticated user

What is ISalesforceUser?

public interface ISalesforceUser
{
string Username { get; set; }
Dictionary<string, string> Properties { get; }
...

}

Contains the OAuth access token, the OAuth scopes, the

URL of the Salesforce server to use with REST calls, etc.

❖ SalesforceClient automatically stores a user’s ISalesforceUser
info on the device and reloads it in its constructor

User caching

Salesforce

External App

User authenticates

Username, tokens, etc.

SalesforceClient

❖ SalesforceClient exposes an API to let you save/load users

User caching API

void Save(ISalesforceUser account);

IEnumerable<ISalesforceUser> LoadUsers();

ISalesforceUser CurrentUser { get; set; }

Save one user

Get all saved users

Currently active user

Note: you cannot disable the auto save/load, but
you can overrule it by setting CurrentUser to null
or to a user of your choice from among those saved

❖ Examine SalesforceClient.CurrentUser to determine if a saved

user was successfully loaded

How to test if a user was loaded?

...
var client = new SalesforceClient(...);

if (client.CurrentUser == null)
{
// No user was loaded, display login UI
// ...

}

Auto load

success?

❖ SalesforceClient will attempt to refresh the access token as needed,

it throws an exception if the refresh fails

Session refresh

Salesforce

External App

Attempt REST op

Invalid session Id
SalesforceClient

Refresh, then retry op

❖ SalesforceClient displays some problems directly to the user

Error Reporting

Network errors or

security issues (e.g.

suspected forgery)

are shown as alerts

Create a SalesforceClient and authenticate a user

Group Exercise

Flash Quiz

① Which OAuth 2.0 flow does the Salesforce Component use?

a) Web server

b) User agent

c) Username and password

Flash Quiz

① Which OAuth 2.0 flow does the Salesforce Component use?

a) Web server

b) User agent

c) Username and password

Flash Quiz

② The user has to login again when their access_token expires?

a) True

b) False

Flash Quiz

② The user has to login again when their access_token expires?

a) True

b) False

Flash Quiz

1. Add the Salesforce Component

2. Create a SalesforceClient

3. Display the login UI

Summary

Perform CRUD operations on a

Standard Object

1. Write a SOQL query

2. Execute a query

3. Create a new record

4. Update an existing record

5. Delete a record

Tasks

❖ The Salesforce REST API provides access to Salesforce data using

standard HTTP verbs

What is the Salesforce REST API?

Salesforce

GET, POST, DELETE, etc.

JSON by default, XML option

❖ A Salesforce REST Resource is a piece of Salesforce data exposed via the

Salesforce REST API

What is a Salesforce REST Resource?

Salesforce
SObject

Search

Query

Chatter

Tabs

...

Limits

Versions

Accounts, cases, tasks, etc.

Search one object

Search multiple objects

REST API versions

Feeds, topics, etc.

Daily limits for API use

All tabs for current user

❖ The Salesforce Component provides access to some of the resources

exposed by the Salesforce REST API

Salesforce Component REST access

Salesforce
SObject

Search

Query

Chatter

Tabs

...

Limits

Versions

These 3 resources

are accessible via

the Salesforce

Component

❖ SObject is a class defined in the Salesforce Component that represents a
record from a Salesforce Object (i.e. SObject represents a table row)

What is an SObject?

public class SObject : ISalesforceResource
{ ...

public string Id { get; }
public IDictionary<string, JsonValue> Options { get; }

public virtual string ResourceName { get; set; }
}

Id has a dedicated

entry, all other fields

go in the Options

dictionary

Object name (i.e. table name)

❖ The Salesforce Component creates SObject instances for you during

query operations

Mapping to SObjects

Salesforce

Id Name Phone ...

001o0000009zUAgAAx Xamarin (855)926-2746

Id 001o0000009zUAgAAx
ResourceName Account
Options

Name Xamarin
Phone(855)926-2746

Account

SObject instance Table row

❖ SalesforceClient extension methods in the Salesforce Component

provides CRUD operations

CRUD methods

Task<string> CreateAsync(SObject sobject) ...
Task<IEnumerable<SObject>> QueryAsync (string query) ...
Task UpdateAsync(SObject sobject) ...
Task<bool> DeleteAsync(SObject sobject) ...

Provide a simple interface that uses SObject and string

and hide the details of the Salesforce REST API

Note: there are also synchronous versions of these methods that block the calling thread so are rarely needed.

❖ The Salesforce Object Query Language (SOQL) is a language for writing

SELECT statements against a Salesforce Object (i.e. select from a table)

What is SOQL?

SELECT Id,Name FROM Account WHERE BillingState = 'CA' ORDER BY AnnualRevenue

Fields to select

must include Id.

Wildcard not

supported.

Can order by

ASC or DESC

Supports LIMIT

and OFFSET for

paging, and

GROUP BY for

grouping

Supports HAVING

to include standard

function calls like

COUNT, SUM, MIN, etc.

❖ Use QueryAsync to execute a SOQL query

How to Query

SaleforceClient client;
...
var query = "SELECT Id,Name,Phone FROM Account WHERE Name LIKE 'X%'";

var sObjects = await client.QueryAsync(query);

foreach (var account in sObjects)
{

string i = account.Id;
string n = account.Options["Name"];
string p = account.Options["Phone"];
// ...

}

SOQL query

Execute

Id has its own

property, other

values are

in Options

❖ Use CreateAsync to create a new record

How to Create

SaleforceClient client;
...
var xam = new SObject();

xam.ResourceName = "Account";

xam.Options["Name"] = "Xamarin";

string id = await client.CreateAsync(xam);

Specify table

to create in

Set required

field values

Returns the Id of the new record if successful or null

❖ SObject event gives you an opportunity to prepare your data before it is

sent to Salesforce as an update

How to prepare an update

public class SObject : ISalesforceResource
{ ...
public event EventHandler<UpdateRequestEventArgs> PreparingUpdateRequest;

}

Contains a dictionary of all the field names and values in the SObject's

Options dictionary, the most common thing to do is remove read-only

fields so they are not sent to Salesforce

❖ Use UpdateAsync to update an existing record

How to Update

SaleforceClient client;

async Task UpdateEmployeeCountAsync(string id, string count)
{
string q = "SELECT Id,Name,NumberOfEmployees,LastModifiedDate FROM Account WHERE Id='" + id +"'";
SObject a = (await client.QueryAsync(q)).First(); // retrieve the record to update

a.Options["NumberOfEmployees"] = count; // modify local data

a.PreparingUpdateRequest += (sender, args) =>
{

args.UpdateData.Remove("LastModifiedDate"); // remove a read-only field
};

await client.UpdateAsync(a);
}

❖ Use DeleteAsync to delete an existing record

How to Delete

SaleforceClient client;

async Task DeleteAccountAsync(string id)
{
var a = new SObject();

a.Id = id;
a.ResourceName = "Account";

bool wasDeleted = await client.DeleteAsync(a);
}

Specify Id

and table

bool indicates success/failure

Query a Standard Object

Individual Exercise

1. Write a SOQL query

2. Execute a query

3. Create a new record

4. Update an existing record

5. Delete a record

Summary

Create a custom SObject

1. Code a derived class of SObject

2. Override ResourceName

3. Write a property for each field

4. Handle updates

5. Use the supplied type converter

Tasks

❖ Using SObject to store your client-side data is awkward

Motivation [problem]

var a = new SObject();

a.ResourceName = "Account";

a.Options["NumberOfEmployees"] = "200";

a.PreparingUpdateRequest += (s, e) =>
{

...
};

Could forget to

set table name

Must handle

update on

each instance

Might misspell

field names

❖ Using a custom SObject-derived type is simpler and safer

Motivation [solution]

var a = new SObject();

a.ResourceName = "Account";

a.Options["NumberOfEmployees"] = "200";

a.PreparingUpdateRequest += (s, e) =>
{

...
};

Offers a named property with type
conversion. ResourceName and

PreparingUpdateRequest
are handled internally.

var a = new MyAccount();

a.NumberOfEmployees = 200;

❖ You can code derived classes of SObject that provide a simpler and safer

interface

Custom SObject

SObject

Typical to write

one subclass for

each Salesforce

Object you access

MyAccount MyCase MyLead

❖ SObject has built-in support for custom derived types

SObject services

public class SObject : ...
{ ...
public IDictionary<string, JsonValue> Options { get; protected set; }

protected JsonValue GetOption (string key, string defaultValue = "") ...
protected void SetOption<T>(string key, T value, Func<T, JsonValue> convertFunc = null) ...

public virtual string ResourceName { get; set; }

public event EventHandler<UpdateRequestEventArgs> PreparingUpdateRequest;
}

You subscribe and then handle

updates in your derived class

You override

Resource Name

You write properties

that store data here

❖ Steps to implement a custom SObject type:

1. Code a derived class of SObject

2. Override ResourceName

3. Write a property for each field

4. Handle updates

How to code an SObject [steps]

❖ Code a derived class of SObject

How to code an SObject [step 1]

public class MyAccount : SObject
{
...

}

Class names typically mirror the Salesforce Object

names, the “My” pattern is used here to emphasize

that this is code you would write

❖ Override ResourceName

How to code an SObject [step 2]

public class MyAccount : SObject
{
public override string ResourceName
{

get { return "Account"; }
set { }

}
...

}

Hardcode the

Resource Name

(this is the Salesforce

Object name, i.e.

the table name)

❖ Write a property for each field

How to code an SObject [step 3]

public class MyAccount : SObject
{ ...
public string Name
{
get { return GetOption("Name"); }
set { SetOption("Name", value); }

}

public int NumberOfEmployees
{
get { return ToInt(GetOption("NumberOfEmployees")); }
set { SetOption("NumberOfEmployees", value.ToString()); }

}

public string LastModifiedDate
{
get { return GetOption("LastModifiedDate"); }
set { SetOption("LastModifiedDate", value); }

}
}

Supply properties

for all the fields

that your app

needs to access

static int ToInt(JsonValue value)
{
int result;

if (int.TryParse(value.ToString(), out result))
return result;

else
return 0;

}

❖ Handle updates

How to code an SObject [step 4]

public class MyAccount : SObject
{ ...

public MyAccount()
{

base.PreparingUpdateRequest += OnUpdate;
}

void OnUpdate(object sender, UpdateRequestEventArgs args)
{

args.UpdateData.Remove("LastModifiedDate");
}

}

Subscribe

Prepare

data as

needed

❖ Queries return SObjects and not instances of your custom derived type

Type converter [motivation]

var query = "SELECT Id,Name,NumberOfEmployees,LastModifiedDate FROM Account";

var sObjects = await client.QueryAsync(query);

Returns IEnumerable<SObject>

❖ SObject provides a generic type converter from SObject to your custom

derived type

Type converter [provided]

public class SObject : ...
{ ...
public T As<T>() where T : SObject, new()
{

var result = new T();

result.SetInner(this);

return result;
}

}

Create an instance

of your derived type

Avoid copying data

by wrapping the new

object around the

old one

❖ You need to manually apply the type converter to create instances of

your derived class

Type converter [use]

var query = "...";
var sObjects = await client.QueryAsync(query);

var accounts = new List<MyAccount>();
foreach (var sObject in sObjects)
{

var account = sObject.As<MyAccount>();
accounts.Add(account);

}

var accounts = sObjects.Select(s => s.As<MyAccount>()).ToList();

Convert one

at a time

Convert all

at once

using LINQ

Create a custom SObject

Individual Exercise

Flash Quiz

① Which operations are generally easier when using a custom SObject-

derived type vs. using SObject directly?

a) Get/set field values

b) Preparing an update

c) Setting the ResourceName

d) All of the above

Flash Quiz

① Which operations are generally easier when using a custom SObject-

derived type vs. using SObject directly?

a) Get/set field values

b) Preparing an update

c) Setting the ResourceName

d) All of the above

Flash Quiz

② The SObject.As<T> method is inefficient since it copies the fields?

a) True

b) False

Flash Quiz

② The SObject.As<T> method is inefficient since it copies the fields?

a) True

b) False

Flash Quiz

1. Code a derived class of SObject

2. Override ResourceName

3. Write a property for each field

4. Handle updates

5. Use the supplied type converter

Summary

Perform a Search

1. Write a SOSL search

2. Execute a search

Tasks

❖ SOQL queries search only a single Salesforce Object, sometimes you

need to search across a larger area

Motivation

SELECT Id,Name FROM Account WHERE Name='Xamarin'

This query will only search Account,

it will not search not search Lead,

Case, Feed, Idea, Order, etc.

❖ The Salesforce Object Search Language (SOSL) is a language for writing

text-search expressions across multiple Salesforce Objects

What is SOSL?

FIND {corp* OR inc*} IN NAME FIELDS RETURNING Account(Id,Name), Lead

Search term(s).

Wildcards */?

and AND/OR

are supported

Object to

search and

fields to

retrieve

Fields to search:

ALL FIELDS,

EMAIL FIELDS,

NAME FIELDS,

PHONE FIELDS,

SIDEBAR FIELDS

Object to

search,

retrieve only

the Id field

Can omit the

RETURNING

clause to

search all

Objects

❖ SOSL results automatically include the record type and record URL

Automatically included info

FIND {corp*} IN NAME FIELDS RETURNING Account(Id,Name)

Record type

...
{
"attributes":
{

"type": "Account",
"url": "/services/data/v28.0/sobjects/Account/001o000000KvXbkAAF"

},
"Id": "001o000000KvXbkAAF",
"Name": "Xamarin Corporation"

}
...

Record URL

❖ The Salesforce Component returns instances of SearchResult

What is a SearchResult?

public class SearchResult
{
public SearchResult(JsonValue jv) { ... }

public string Type { get; set; }

public string Url { get; set; }

public string Id { get; set; }
}

Record type (e.g. Account)

URL of the matching record

Id of the matching record

❖ Searches using the Salesforce Component prune the response down to
the properties available in SearchResult

Mapping results to SearchResult

{
"attributes":
{

"type": "Account",
"url": "/services/data/v28.0/sobjects/Account/001o000000KvXbkAAF"

},
"Id": "001o000000KvXbkAAF",
"Name": "Xamarin Corporation"

}

Type Account
Url /services/data/v28.0/sobjects/Account/001o000000KvXbkAAF
Id 001o000000KvXbkAAF

SearchResult
instance

SOSL result

from Salesforce

All data except Type, Url, and Id is discarded

❖ Typically do not include field selections in RETURNING clause so only the
Id is returned (Id is required in the results and other fields would be

discarded in the mapping to SearchResult)

Recommended SOSL style

FIND {corp*} OR {inc*} IN NAME FIELDS RETURNING Account, Lead

Should list Objects to

search as shown here, this

will select only the Id field

from each matching record

❖ SalesforceClient extension method provides Search support

Search method

Task<IEnumerable<SearchResult>> SearchAsync(string search) ...

SOSL search

Note: there is also a synchronous version of this method that blocks the calling thread so is rarely needed.

Results

❖ Use SearchAsync to execute a SOSL search

How to Search

SaleforceClient client;
...
var search = "FIND {corp*} IN NAME FIELDS RETURNING Account, Lead";

var results = await client.SearchAsync(search);

foreach (var result in results)
{

string id = result.Id;
string resourceName = result.Type;
// ...

}

SOSL

Execute

Process results

e.g. retrieve by

Id and display

Perform a search

Individual Exercise

1. Write a SOSL search

2. Execute a search

Summary

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

