
Download class materials from

university.xamarin.com

Using Async and Await

CSC350

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Introducing the async and await
keywords

2. Applying async and await

3. Diving into the internals of async
and await

Objectives

Introducing the async and await

keywords

1. Defining asynchronous programming

2. Explore available .NET options for

asynchronous programming

3. Using the async and await keywords

to simplify asynchronous programming

Tasks

What is asynchrony?

Synchronous Asynchronousvs.

❖ Asynchronous programming allows our mobile apps to continue to

respond to user interaction while doing something else

Why asynchronous programming?

Reading or writing

to a database or file

Accessing a web

service

Performing data

processing

❖ Asynchronous operations are started and then finish at some point in

the future with a result ... much like in the real world ...

Thinking about asynchrony

Read a magazine ("other work")

Take a nap zzz ("sleep")

"The doctor will see you now.."

While waiting to

see the doctor I

could …

❖ Asynchronous operations are started and then finish at some point in

the future with a result ... Much like in the real world ...

Thinking about asynchrony

Show progress in the UI

and interact with the user

Take a nap zzz ("sleep")

Process

Result

While my

program

downloads a

file, the main

thread could ...

❖ There are several asynchronous programming models to choose from:

Async variations in .NET

Async

Programming

Model (APM)

IAsyncResult BeginMethod(…)

EndMethod(IAsyncResult)

.NET 1.0

❖ There are several asynchronous programming models to choose from:

Async variations in .NET

Event-based

Async Pattern

(EAP)

Async

Programming

Model (APM)

MethodAsync(...)

MethodCompleted event

.NET 2.0

❖ There are several asynchronous programming models to choose from:

Async variations in .NET

Task-based

Async Pattern

(TAP)

Event-based

Async Pattern

(EAP)

Async

Programming

Model (APM)

Task MethodAsync(…)

.NET 4.0

Use existing async APIs in an application

Group Exercise

❖ Prior to .NET 4.5, async programming was done through callbacks that

forced developers to write code in a non-linear fashion

The problem with async programming

void OnReadDataFromUrl(object sender, EventArgs e)
{

WebClient wc = new WebClient();
wc.DownloadDataCompleted += (sender, e) => {

if (e.Error == null) {
var data = UTF8Encoding.GetString(e.Result);
LoadData(data);

}
};
wc.DownloadDataAsync(new Uri(url.Text));

}

How readable

is this code

❖ Prior to .NET 4.5, async programming was done through callbacks that

forced developers to write code in a non-linear fashion

The problem with async programming

void OnReadDataFromUrl(object sender, EventArgs e)
{

WebClient wc = new WebClient();
wc.DownloadDataCompleted += (sender, e) => {

if (e.Error == null) {
var data = UTF8Encoding.GetString(e.Result);
LoadData(data);

}
};
wc.DownloadDataAsync(new Uri(url.Text));

}

Processing code is

defined separately

❖ Prior to .NET 4.5, async programming was done through callbacks that

forced developers to write code in a non-linear fashion

The problem with async programming

void OnReadDataFromUrl(object sender, EventArgs e)
{

WebClient wc = new WebClient();
wc.DownloadDataCompleted += (sender, e) => {

if (e.Error == null) {
var data = UTF8Encoding.GetString(e.Result);
LoadData(data);

}
};
wc.DownloadDataAsync(new Uri(url.Text));

}

Exceptions are

reported in non-

traditional fashion

❖ Prior to .NET 4.5, async programming was done through callbacks that

forced developers to write code in a non-linear fashion

The problem with async programming

Initiating method

call is done last

void OnReadDataFromUrl(object sender, EventArgs e)
{

WebClient wc = new WebClient();
wc.DownloadDataCompleted += (sender, e) => {

if (e.Error == null) {
var data = UTF8Encoding.GetString(e.Result);
LoadData(data);

}
};
wc.DownloadDataAsync(new Uri(url.Text));

}

❖ We want to write our code just as if it were going to be executed

synchronously in step-by-step fashion … like this:

What we'd like to do…

void OnReadDataFromUrl(object sender, EventArgs e)
{

WebClient wc = new WebClient();
try {

byte[] result = wc.DownloadData(new Uri(url.Text));
var data = UTF8Encoding.GetString(result);
LoadData(data);

}
catch (Exception ex) { ... }

}
How readable

is this code now

❖ Most UI applications benefit from asynchronous code, but developers

struggle to write it properly;

Making asynchronous code simpler

async await

enter C# 5 and two new keywords:

❖ C# keywords allow developers to write code in a synchronous fashion

but have it run asynchronously

The new world of async + await

async void OnReadDataFromUrl(object sender, EventArgs e)
{

WebClient wc = new WebClient();
try {

byte[] result = await wc.DownloadData(new Uri(url.Text));
var data = UTF8Encoding.GetString(result);
LoadData(data);

}
catch (Exception ex) { ... }

}

Processing code is

defined exactly where it

should be – right after

the call to get the data

❖ C# keywords allow developers to write code in a synchronous fashion

but have it run asynchronously

The new world of async + await

async void OnReadDataFromUrl(object sender, EventArgs e)
{

WebClient wc = new WebClient();
try {

byte[] result = await wc.DownloadData(new Uri(url.Text));
var data = UTF8Encoding.GetString(result);
LoadData(data);

}
catch (Exception ex) { ... }

}

Errors are handled

using traditional

exception model

Look at async and await

Demonstration

1. Defining asynchronous programming

2. Explore available .NET options for

asynchronous programming

3. Using the async and await keywords

to simplify asynchronous programming

Summary

Applying async and await

1. What does the async keyword do?

2. Applying the await keyword

3. Working with awaitable expressions

4. Limitations of async and await

Tasks

❖ The presence of async on a method allows the await keyword to be

used in the method body, and indicates that some part of this method

can be executed asynchronously

What does the async keyword do?

async void OnReadDataFromUrl(object sender, EventArgs e)
{

... // Now we can use await
}

Must be applied before the return type declaration on the method

❖ The await keyword is applied to awaitable expressions

Applying the await keyword

async void OnReadDataFromUrl(object sender, EventArgs e)
{

WebClient wc = new WebClient();
byte[] result = await wc.DownloadDataTaskAsync(

new Uri(url.Text));
...

An awaitable expression is an asynchronous operation, like

this one that downloads data from a web endpoint

❖ Key idea behind await is to pause forward execution of the method

until after the asynchronous operation is complete

What does the await keyword do?

async void OnReadDataFromUrl(object sender, EventArgs e)
{

WebClient wc = new WebClient();

byte[] result = await wc.DownloadDataTaskAsync(
new Uri(url.Text));

var data = UTF8Encoding.GetString(result);
LoadData(data);

...

This code cannot

execute until the

data is downloaded

❖ Can also use keywords in lambda expressions and anonymous delegates

Using await in lambda expressions

button.Clicked += async (sender,e) =>
{

HttpClient client = new HttpClient();
string contents = await client.GetStringAsync(...);
welcomeLabel.Text = contents.ToLower();

};

must add async keyword onto the expression definition

await keyword goes into the method body – but is still applied to the

awaitable expression

❖ Awaitable expressions in .NET are methods that return a Task or

Task<T>; this is a framework class that represents an asynchronous

request

What is an awaitable expression?

public Task<byte[]> DownloadDataTaskAsync(string address);

Returning a task from a method call indicates that some

portion of the method is performed asynchronously

❖ Awaitable expressions in .NET are methods that return a Task or

Task<T>; this is a framework class that represents an asynchronous

request

What is an awaitable expression?

public Task<byte[]> DownloadDataTaskAsync(string address);

Task<T> is a generic version of Task that returns a promise, or future value

that will be available when the asynchronous operation completes

❖ Awaitable expressions in .NET are methods that return a Task or

Task<T>; this is a framework class that represents an asynchronous

request

What is an awaitable expression?

public Task<byte[]> DownloadDataTaskAsync(string address);

By convention, methods that are executed

asynchronously always have the suffix Async

❖ await does not create a thread, or even require a thread be used

Be careful: Await != Thread

Possibly no additional thread is used here, but the two lines will be displayed 1

second apart; await is all about coordination, whether a thread is used or not is up

to the awaitable expression

async void LetsGoAsync(...) {
Debug.WriteLine("1.. 2.. 3..");
await TimerDelay(1000);
Debug.WriteLine("Go!");

}

Task TimerDelay(int msec) { ... }

❖ The awaitable expression must provide the asynchronous capability

Be careful: Await != Thread

async void button1_Click(...)
{

Action work = CPUWork;
await RunWork(work);

}

async Task RunWork(Action work)
{

work();
}

CPUWork will be

executed

synchronously!

❖ The awaitable expression must provide the asynchronous capability

Be careful: Await != Thread

async void button1_Click(...)
{

Action work = CPUWork;
await RunWork(work);

}

async Task RunWork(Action work)
{

return Task.Run(() => work());
}

Flash Quiz

① Which method definition is correct?

a) void async ReadDataFromUrl(string url) { ... }

b) void await ReadDataFromUrl(string url) { ... }

c) async void ReadDataFromUrl(string url) { ... }

d) await void ReadDataFromUrl(string url) { ... }

Flash Quiz

① Which method definition is correct?

a) void async ReadDataFromUrl(string url) { ... }

b) void await ReadDataFromUrl(string url) { ... }

c) async void ReadDataFromUrl(string url) { ... }

d) await void ReadDataFromUrl(string url) { ... }

Flash Quiz

② In response to the await keyword, the C# compiler will create a thread

a) True

b) False

Flash Quiz

② In response to the await keyword, the C# compiler will create a thread

a) True

b) False

Flash Quiz

1. What does the async keyword do?

2. Applying the await keyword

3. Working with awaitable expressions

4. Limitations of async and await

Summary

Diving into the internals of

async and await

1. What does the await keyword do?

2. Exploring the generated code

3. Dealing with return values

Tasks

❖ At runtime, each await keyword starts the asynchronous operation and

then returns to the caller because it cannot continue execution yet

Execution progress for await

async Task ReadFromUrlAsync(string url)
{

WebClient wc = new WebClient();

byte[] result = await wc.DownloadDataTaskAsync(
new Uri(url));

var data = Encoding.ASCII.GetString(result);
LoadData(data);

...

async void OnClick(...)
{

string url = ...;
indicator.IsRunning = true;
await ReadFromUrlAsync(url);
indicator.IsRunning = false;

}

✔
✔

❖ … then when the awaitable expression has a result, the runtime will

return to the method where it left off to continue execution

Execution progress for await

async Task ReadFromUrlAsync(string url)
{

WebClient wc = new WebClient();

byte[] result = await wc.DownloadDataTaskAsync(
new Uri(url));

var data = Encoding.ASCII.GetString(result);
LoadData(data);

...

async void OnClick(...)
{

string url = ...;
indicator.IsRunning = true;
await ReadFromUrlAsync(url);
indicator.IsRunning = false;

}

UI thread processes

other UI events while

waiting for the data to be downloaded

✔
✔
✔

✔

✔

✔
✔

❖ … then when the awaitable expression has a result, the runtime will

return to the method where it left off to continue execution

Execution progress for await

UI

threa

d

ReadFromUrlAsync

wc.DownloadDataTaskAsync

I/O

Reading from URL

UI Activity GetString LoadData

❖ Adding async changes how C# compiles the method and prepares it to

support one or more asynchronous operations

How does await really work?

public static void SayHello() {
Console.WriteLine("Hello, World!");

}

.method public hidebysig static void SayHello() cil managed
{

.maxstack 8
L_0000: nop
L_0001: ldstr "Hello, World!"
L_0006: call void [mscorlib]System.Console::WriteLine(string)
L_000b: nop
L_000c: ret

}

http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://AmazingVidPlayer:1.0.0.0/AmazingVidPlayer.Program/SayHello()
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Console
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Console/WriteLine(String)
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.String

❖ Adding async changes how C# compiles the method and prepares it to

support one or more asynchronous operations

How does await really work?

public static async void SayHello() {
Console.WriteLine("Hello, World!");

}

All we've done is add the async keyword to the method… but look

what changes in the IL:

.method public hidebysig static void SayHello() cil managed
{
.maxstack 2
.locals init ([0] class Test.Program/<SayHello>d__1 d__)
IL_0000: ldloca.s V_0
IL_0002: call valuetype [mscorlib]System.Runtime.CompilerServices.AsyncTaskMethodBuilder

[mscorlib]System.Runtime.CompilerServices.AsyncTaskMethodBuilder::Create()
IL_0007: stfld valuetype [mscorlib]System.Runtime.CompilerServices.AsyncTaskMethodBuilder

Program/'<SayHello>d__1'::'<>t__builder'
IL_000c: ldloca.s V_0
IL_000e: call instance void Program/'<SayHello>d__1'::MoveNext()
IL_0013: ret

}

New compiler-

generated class

introduced to manage

any asynchronous code

Method body is compiled

as a series of "steps"

similar to iterator methods

http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://AmazingVidPlayer:1.0.0.0/AmazingVidPlayer.Program/SayHello()

.method public hidebysig static void SayHello() cil managed
{
.maxstack 2
.locals init ([0] class Test.Program/<SayHello>d__1 d__)
IL_0000: ldloca.s V_0
IL_0002: call valuetype [mscorlib]System.Runtime.CompilerServices.AsyncTaskMethodBuilder

[mscorlib]System.Runtime.CompilerServices.AsyncTaskMethodBuilder::Create()
IL_0007: stfld valuetype [mscorlib]System.Runtime.CompilerServices.AsyncTaskMethodBuilder

Program/'<SayHello>d__1'::'<>t__builder'
IL_000c: ldloca.s V_0
IL_000e: call instance void Program/'<SayHello>d__1'::MoveNext()
IL_0013: ret

}

async methods always return

after MoveNext is finished

http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://AmazingVidPlayer:1.0.0.0/AmazingVidPlayer.Program/SayHello()

.method public hidebysig static void SayHello() cil managed
{
.maxstack 2
.locals init ([0] class Test.Program/<SayHello>d__1 d__)
IL_0000: ldloca.s V_0
IL_0002: call valuetype [mscorlib]System.Runtime.CompilerServices.AsyncTaskMethodBuilder

[mscorlib]System.Runtime.CompilerServices.AsyncTaskMethodBuilder::Create()
IL_0007: stfld valuetype [mscorlib]System.Runtime.CompilerServices.AsyncTaskMethodBuilder

Program/'<SayHello>d__1'::'<>t__builder'
IL_000c: ldloca.s V_0
IL_000e: call instance void Program/'<SayHello>d__1'::MoveNext()
IL_0013: ret

}

.method private hidebysig newslot virtual final instance void MoveNext() cil managed
{
.override [mscorlib]System.Runtime.CompilerServices.IAsyncStateMachine::MoveNext
.maxstack 2
.locals init ([0] int32 num, [1] class [mscorlib]System.Exception exception)
L_0000: ldarg.0
L_0001: ldfld int32 Test.Program/<SayHello>d__1::<>1__state
L_0006: stloc.0
L_0008: ldstr "Hello, World!"
L_000d: call void [mscorlib]System.Console::WriteLine(string)
L_0013: leave.s
...

}

Tracks the current

"state" of this async

method

http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://AmazingVidPlayer:1.0.0.0/AmazingVidPlayer.Program/SayHello()
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://AmazingVidPlayer:1.0.0.0/AmazingVidPlayer.Program/SayHello()

.method public hidebysig static void SayHello() cil managed
{
.maxstack 2
.locals init ([0] class Test.Program/<SayHello>d__1 d__)
IL_0000: ldloca.s V_0
IL_0002: call valuetype [mscorlib]System.Runtime.CompilerServices.AsyncTaskMethodBuilder

[mscorlib]System.Runtime.CompilerServices.AsyncTaskMethodBuilder::Create()
IL_0007: stfld valuetype [mscorlib]System.Runtime.CompilerServices.AsyncTaskMethodBuilder

Program/'<SayHello>d__1'::'<>t__builder'
IL_000c: ldloca.s V_0
IL_000e: call instance void Program/'<SayHello>d__1'::MoveNext()
IL_0013: ret

}

.method private hidebysig newslot virtual final instance void MoveNext() cil managed
{
.override [mscorlib]System.Runtime.CompilerServices.IAsyncStateMachine::MoveNext
.maxstack 2
.locals init ([0] int32 num, [1] class [mscorlib]System.Exception exception)
L_0000: ldarg.0
L_0001: ldfld int32 Test.Program/<SayHello>d__1::<>1__state
L_0006: stloc.0
L_0008: ldstr "Hello, World!"
L_000d: call void [mscorlib]System.Console::WriteLine(string)
L_0013: leave.s
...

}

Always captures

exceptions – even if

you didn't ask it to!

http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://AmazingVidPlayer:1.0.0.0/AmazingVidPlayer.Program/SayHello()
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://mscorlib:4.0.0.0:b77a5c561934e089/System.Void
http://127.0.0.1/roeder/dotnet/Default.aspx?Target=code://AmazingVidPlayer:1.0.0.0/AmazingVidPlayer.Program/SayHello()

❖ Under the covers, the compiler turns the method into a state machine in

anticipation of having portion(s) be executed in steps

The secret behind await

async void ReadDataFromUrl(string url)
{

WebClient wc = new WebClient();
var result = await wc.DownloadDataTaskAsync(url);
var data = Encoding.ASCII.GetString(result);
LoadData(data);

}

All of the variables in the method are captured

as fields in the state machine and used to

manage the local state

❖ State Machine is coded into a MoveNext method which is called for

each step and tracks an integer state to execute the code

What's in MoveNext?

public void MoveNext()
{

uint num = (uint)this.$PC;
this.$PC = -1;
try {

switch (num) {
case 0:

this.<wc>__0 = new WebClient();
this.$awaiter0 = this.<wc>__0.DownloadDataTaskAsync(this.url).GetAwaiter();
this.$PC = 1;
...
return;
break;

case 1:
this.<result>__1 = this.$awaiter0.GetResult();
this.<data>__2 = Encoding.ASCII.GetString(this.<result>__1);
this.$this.LoadData(this.<data>__2);
break;

default:
return;

}
}
catch (Exception exception) { ... }
this.$PC = -1;
this.$builder.SetResult();

}

async void ReadDataFromUrl(string url)
{

WebClient wc = new WebClient();
var result = await wc.DownloadDataTaskAsync(url);
var data = Encoding.ASCII.GetString(result);
LoadData(data);

}

Create the WebClient and

issue the download async

request

1

Move to

next state

❖ State Machine is coded into a MoveNext method which is called for

each step and tracks an integer state to execute the code

What's in MoveNext?

public void MoveNext()
{

uint num = (uint)this.$PC;
this.$PC = -1;
try {

switch (num) {
case 0:

this.<wc>__0 = new WebClient();
this.$awaiter0 = this.<wc>__0.DownloadDataTaskAsync(this.url).GetAwaiter();
this.$PC = 1;
...
return;
break;

case 1:
this.<result>__1 = this.$awaiter0.GetResult();
this.<data>__2 = Encoding.ASCII.GetString(this.<result>__1);
this.$this.LoadData(this.<data>__2);
break;

default:
return;

}
}
catch (Exception exception) { ... }
this.$PC = -1;
this.$builder.SetResult();

}

async void ReadDataFromUrl(string url)
{

WebClient wc = new WebClient();
var result = await wc.DownloadDataTaskAsync(url);
var data = Encoding.ASCII.GetString(result);
LoadData(data);

}

Create the WebClient and

issue the download async

request

1
Notice the

return!

❖ State Machine is coded into a MoveNext method which is called for

each step and tracks an integer state to execute the code

What's in MoveNext?

public void MoveNext()
{

uint num = (uint)this.$PC;
this.$PC = -1;
try {

switch (num) {
case 0:

this.<wc>__0 = new WebClient();
this.$awaiter0 = this.<wc>__0.DownloadDataTaskAsync(this.url).GetAwaiter();
this.$PC = 1;
...
return;
break;

case 1:
this.<result>__1 = this.$awaiter0.GetResult();
this.<data>__2 = Encoding.ASCII.GetString(this.<result>__1);
this.$this.LoadData(this.<data>__2);
break;

default:
return;

}
}
catch (Exception exception) { ... }
this.$PC = -1;
this.$builder.SetResult();

}

async void ReadDataFromUrl(string url)
{

WebClient wc = new WebClient();
var result = await wc.DownloadDataTaskAsync(url);
var data = Encoding.ASCII.GetString(result);
LoadData(data);

}

Process the results from the

async call

2

❖ State Machine is coded into a MoveNext method which is called for

each step and tracks an integer state to execute the code

What's in MoveNext?

public void MoveNext()
{

uint num = (uint)this.$PC;
this.$PC = -1;
try {

switch (num) {
case 0:

this.<wc>__0 = new WebClient();
this.$awaiter0 = this.<wc>__0.DownloadDataTaskAsync(this.url).GetAwaiter();
this.$PC = 1;
...
return;
break;

case 1:
this.<result>__1 = this.$awaiter0.GetResult();
this.<data>__2 = Encoding.ASCII.GetString(this.<result>__1);
this.$this.LoadData(this.<data>__2);
break;

default:
return;

}
}
catch (Exception exception) { ... }
this.$PC = -1;
this.$builder.SetResult();

}

async void ReadDataFromUrl(string url)
{

WebClient wc = new WebClient();
var result = await wc.DownloadDataTaskAsync(url);
var data = Encoding.ASCII.GetString(result);
LoadData(data);

}

Catches all exceptions; this is

done even if your method

does not have a try / catch
handler and is how await is

able to re-throw them in the

client code.

3

Flash Quiz

① The await keyword causes the current thread to block waiting for the

asynchronous operation to complete

a) True

b) False

Flash Quiz

① The await keyword causes the current thread to block waiting for the

asynchronous operation to complete

a) True

b) False

Flash Quiz

② Adding async to a method definition doesn't change anything until the

await keyword is used

a) True

b) False

Flash Quiz

② Adding async to a method definition doesn't change anything until the

await keyword is used

a) True

b) False

Flash Quiz

③ What side effects does using async/await always have on a method?

(Select all that apply)

a) The method will be broken into multiple steps

b) Exceptions will be caught, and possibly re-thrown

c) Local variables will be captured and moved to the GC heap

d) It will cause the method to use multiple threads

Flash Quiz

③ What side effects does using async/await always have on a method?

(Select all that apply)

a) The method will be broken into multiple steps

b) Exceptions will be caught, and possibly re-thrown

c) Local variables will be captured and moved to the GC heap

d) It will cause the method to use multiple threads

Flash Quiz

❖ Notice that the value being consumed and the value being returned are

not quite the same

Leaking abstractions

public Task<byte[]> DownloadDataTaskAsync(string address);

byte[] result = await wc.DownloadDataTaskAsync(...);

Compiler interprets the await keyword to mean "get the

result from the task"

❖ This becomes evident in the return value from methods that use await

Dealing with return values

What are we returning here?

Or perhaps a better question is where

are we returning from this method?

async string ReadDataFromUrl(string url)
{

WebClient wc = new WebClient();
byte[] result = await wc.DownloadDataTaskAsync(url);
string data = Encoding.ASCII.GetString(result);
return data;

}

❖ This becomes evident in the return value from methods that use await

Dealing with return values

The method is really returning to the

caller here – before we ever hit an actual

return keyword .. What must this return?

❖ Task<T> represents a "future" value – something that will eventually

produce either a value or exception; this is what we must return from

the method in order for the compiler to produce legitimate code

Returning a "future" value

async Task<string> ReadDataFromUrl(string url)
{

WebClient wc = new WebClient();
var result = await wc.DownloadDataTaskAsync(url);
string data = Encoding.ASCII.GetString(result);
return data;

}

❖ Since awaited methods return before the entire method is complete,

they must have a specific return type, one of three valid values:

Valid return values for async methods

Task<T> if it

returns a value

async Task<double> CalculatePiAsync()

❖ Since awaited methods return before the entire method is complete,

they must have a specific return type, one of three valid values:

Valid return values for async methods

Task for no

return value

(e.g. void)

Task<T> if it

returns a value

async Task WriteToLogAsync(...)

❖ Since awaited methods return before the entire method is complete,

they must have a specific return type, one of three valid values:

Valid return values for async methods

Task for no

return value

(e.g. void)

void for

event handlers

Task<T> if it

returns a value

async void OnClick(...)

❖ You cannot await a void-return async

method since they don't return a Task

❖ Without an await, you cannot catch

any exceptions that occur in the task

❖ You should never use a void-return

async method unless it's an event

handler, or a virtual method override

where you have no choice

Beware void returns

Convert app to use async and await

Individual Exercise

❖ If you do not need to process the results from a Task, then you can just

return the task directly – no need to await it

When is await unnecessary?

async Task<byte[]> ReadDataFromUrlAsync(string url)
{

WebClient wc = new WebClient();
byte[] result = await wc.DownloadDataTaskAsync(

new Uri(url));
return result;

}

Think about what happens when the compiler does with the async
keyword and what it does when it compiles the await keyword?

❖ If you do not need to process the results from a Task, then you can just

return the task directly – no need to await it

When is await unnecessary?

Task<byte[]> ReadDataFromUrlAsync(string url)
{

WebClient wc = new WebClient();
return wc.DownloadDataTaskAsync(new Uri(url));

}

This is more efficient because we avoid the state machine logic and we

don't come back to this method when the download is complete!

async Task ReadDataFromUrl(string url)
{

WebClient wc = new WebClient();
byte[] result = await wc.DownloadDataTaskAsync(

new Uri(url));

var data = Encoding.ASCII.GetString(result);
LoadData(data);

...

❖ Sometimes it's beneficial to continue the work on the task, rather than

switching back to the original thread

Mapping await to threads

Do we need to be

back on thread #1

when we run this

code?

WebClient wc = new WebClient();
Task<byte[]> task = wc.DownloadDataTaskAsync(new Uri(url));

byte[] result = await task.ConfigureAwait(false);

var data = Encoding.ASCII.GetString(result);

❖ Use ConfigureAwait(false) on the task to tell the API to not switch

back to the original thread context

Staying on the task thread

❖ Use ConfigureAwait(false) on the task to tell the API to not switch

back to the original thread context

Staying on the task thread

WebClient wc = new WebClient();
Task<byte[]> task = wc.DownloadDataTaskAsync(new Uri(url));

byte[] result = await task.ConfigureAwait(false);

var data = Encoding.ASCII.GetString(result);

Async OpThis can be more efficient when data processing does not need to be

on the original thread (e.g. UI) because we avoid the cost of switching

threads

Thread #1

❖ Beware: ConfigureAwait can return back on the original thread if the

task completes immediately (e.g. no asynchrony occurred)

Staying on the task thread

// Start on Thread #1 (UI thread)
await Task.FromResult(0).ConfigureAwait(false);

// WARNING: Still on Thread #1!
await Task.Delay(0).ConfigureAwait(false);

// WARNING: Still on Thread #1!
await Task.Delay(1000).ConfigureAwait(false);

// OK: Now on some other thread..

❖ Can get the best of both worlds by pushing the majority of the work

onto the background/worker thread and switching to the UI thread to

update UI

Manually switching back to the UI thread

UI

threa

d

ReadFromUrlAsync

wc.DownloadDataTaskAsync
.ConfigureAwait(false)

I/O

Reading from URL

UI Activity

Process the data

Fill in UI with

calculated data

❖ Each method that utilizes await has it's own context – so the calling

method is not affected by ConfigureAwait

Staying on the task thread

async Task RefreshMovieList() {
var movieList = await ReloadMovies ();
RefreshUIWithMovies (movieList);

}

async Task<List<Movie>> ReloadMovies() {
var result = await new WebClient()

.DownloadDataTaskAsync(new Uri(AmazonMovies))

.ConfigureAwait(false);
var json = Encoding.ASCII.GetString (result);
return Newtonsoft.Json.JsonConvert.DeserializeObject<List<Movie>> (json);

}

What thread will

this method be

executed on?

❖ Each method that utilizes await has it's own context – so the calling

method is not affected by ConfigureAwait

Staying on the task thread

async Task RefreshMovieList() {
var movieList = await ReloadMovies ();
RefreshUIWithMovies (movieList);

}

async Task<List<Movie>> ReloadMovies() {
var result = await new WebClient()

.DownloadDataTaskAsync(new Uri(AmazonMovies))

.ConfigureAwait(false);
var json = Encoding.ASCII.GetString (result);
return Newtonsoft.Json.JsonConvert.DeserializeObject<List<Movie>> (json);

}

Main thread

Bkgnd thread

❖ Each platform has a unique API to get to the UI thread, Xamarin.Forms

abstracts this into a single static method on the Device class

Switching to the UI thread

Task.Run(() => { // Long running work in a loop
...
while (!haveFinalValue) {

calculatedValue = RefineCalculation(calculatedValue);
// Update the UI
Device.BeginInvokeOnMainThread(() =>

resultLabel.Text = calculatedValue.ToString();
});
haveFinalValue = ...;

}
});

❖ SynchronizationContext allows you to switch to an associated

thread; this works on all platforms and can be mocked out for unit tests!

Switching to the UI thread

// Must get context on the thread we want to return to (UI)
SynchronizationContext ctx = SynchronizationContext.Current;
Task.Run(() => {

...
// Now let's update the UI
ctx.Post(unused => {

resultLabel.Text = calculatedValue.ToString();
}, null);

});

Flash Quiz

① The await keyword can be applied to ___________

a) any method call we want to run on a different thread

b) really fast code we want to slow down

c) methods that return a Task or Task<T>

d) All of the above

Flash Quiz

① The await keyword can be applied to ___________

a) any method call we want to run on a different thread

b) really fast code we want to slow down

c) methods that return a Task or Task<T>

d) All of the above

Flash Quiz

② The await keyword should always be added to a method that returns a

Task type

a) True

b) False

Flash Quiz

② The await keyword should always be added to a method that returns a

Task type

a) True

b) False

Flash Quiz

③ Using ConfigureAwait(false) in Xamarin.Forms causes await to

return on which thread?

a) UI thread (calling thread)

b) Always a thread pool thread

c) The thread that did the background work (which might be the UI

thread)

Flash Quiz

③ Using ConfigureAwait(false) in Xamarin.Forms causes await to

return on which thread?

a) UI thread (calling thread)

b) Always a thread pool thread

c) The thread that did the background work (which might be the UI

thread)

Flash Quiz

④ If you want to use a cross-platform approach to switching back to the

UI thread, you should use ______________

a) Dispatcher.BeginInvoke

b) SynchronizationContext

c) Device.BeginInvokeOnMainThread

d) RunOnUIThread

Flash Quiz

④ If you want to use a cross-platform approach to switching back to the

UI thread, you should use ______________

a) Dispatcher.BeginInvoke

b) SynchronizationContext

c) Device.BeginInvokeOnMainThread

d) RunOnUIThread

Flash Quiz

❖ Never forget that await coordinates activity – it can inadvertently

reduce parallelism in your code

Coordinating multiple tasks

Task priceAA = ..., priceDelta = ..., priceUnited = ...;
List<Task> runningTasks = { priceAA, priceDelta, ... };

for (int i = 0; i < 3; i++) {
await runningTasks[i];
... // Process results

} What's the problem

with this code?

❖ Better to start multiple, related tasks to get data and then efficiently wait

for all of them to be finished before processing the results

Coordinating multiple tasks

Task priceAA = ...;
Task priceDelta = ...;
Task priceUnited = ...;

// Wait for all prices to be available before updating UI
await Task.WhenAll(priceAA, priceDelta, priceUnited);

// All tasks are complete, display results to user
...

WhenAll returns a new Task
which completes when all the

passed tasks are finished

❖ Sometimes returning results can be processed as soon as the task is

complete – independent of the other tasks we are waiting on

Efficient processing of multiple tasks

UI

threa

d

GetFlights

Task.Run(…)
Task.Run(…)

Task.WhenAll()

PriceAA

PriceDelta

Do we need both to be finished to

process the first one?

❖ Can use Task.WhenAny to return control when the first task is done – use

a loop to continue processing the results in the order they are finished

Efficient processing of multiple tasks

List<Task> runningTasks = ...;
while (runningTasks.Any()) {

// Wait for the first task to finish
Task completed = await Task.WhenAny(runningTasks);
// Remove from our running list
runningTasks.Remove(completed);
// Process the completed task
CheckIfLowestPrice(completed);

}

Make sure to use await!

Task.WhenAny returns a

Task<Task> so code will

compile without await but

won't run properly!

❖ Several restrictions placed on async / await usage by the compiler

Async / Await limitations

No out or ref
parameters

Return complex types

from the Task instead –

such as Tuple<T1,T2>

❖ Several restrictions placed on async / await usage by the compiler

Async / Await limitations

No out or ref
parameters

Cannot use in

constructors or

property getters

Ctors and properties

must return an

immediate value, which

is not possible

❖ Several restrictions placed on async / await usage by the compiler

Async / Await limitations

No out or ref
parameters

Cannot use in

constructors or

property getters

Not allowed

while in sync

block (lock)

Can use different

synchronization

mechanism, or

restructure code

❖ Several restrictions placed on async / await usage by the compiler

Async / Await limitations

No out or ref
parameters

Cannot use in

constructors or

property getters

Not allowed

while in sync

block (lock)

Limited support

in LINQ queries

Can only use await in

first select or group

1. What does the await keyword do?

2. Exploring the generated code

3. Dealing with return values

Summary

❖ Async / Await are really nice ways to

provide a convenient structure for

consuming async code

❖ Next we will look at how to write

async code using the Task Parallel

Framework in CSC351

Where are we going from here?

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

