
Download class materials from

university.xamarin.com

Object Oriented

Programming

CSC103

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Xamarin may have patents, patent applications, trademarked, copyrights, or other intellectual

property rights covering subject matter in this document. Except as expressly provided in any

license agreement from Xamarin, the furnishing of this document does not give you any

license to these patents, trademarks, or other intellectual property.

© 2016 Xamarin. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, and Xamarin Studio are

either registered trademarks or trademarks of Xamarin in the U.S.A. and/or other countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Determine classes and

relationships in a program

2. Create a class with fields to

maintain state

3. Use enumerations to define

constant values

Objectives

Determine classes and relationships in

a program

1. Define Object Oriented

Programming (OOP)

2. Work with classes and OOP in C#

3. Define fields in C#

Tasks

❖ You should strive to write software

that is easy for you and other

programmers to understand

Motivation

❖ The way your program code is organized makes a huge difference in

how easy it is to debug and maintain

Why is organization important?

Faster to fix errors Faster to add new features

❖ Object-Oriented Programming (OOP) is a design philosophy invented to

handle increasingly complex programs where we create objects to

model things in the problem we are trying to solve (programmers call

this the "problem domain")

What is Object-Oriented Programming?

Music app might have:

• Album

• Song

• Playlist

• ...

Nike app might have:

• Runner

• Workout

• Route

• ...

Drawing app might have:

• Circle

• Square

• Eraser

• ...

❖ The key idea of OOP is that the programmer can create new types to

better model the world

Defining new types

string DateTime int double

remember, a type tells you the kind of object you are

working with, these are examples of built-in types

❖ A class is a software model that defines a new type representing some

concept or real-world element in your program

What is a class?

Just as this model represents an airplane

and has many of the same elements

❖ Classes contain data and behavior bundled together

What is in a class?

Class

data the class "has"

Fields

behavior the class "does"

Methods

❖ A field is a variable owned by the class that holds data

What are fields?

For a button, the fields might include

width, height, position, and text

For a dog, the fields might include name, age,

weight, and breed

What are methods?

For a button, the methods might include

show, hide, click and resize

❖ Methods are code blocks, containing C# statements, that provide logic

to perform work related to the class

For a dog, the methods might include bark,

eat, walk, lick, and sniff

Flash Quiz

① A class is a type that combines both data and behavior?

a) True

b) False

Flash Quiz

① A class is a type that combines both data and behavior?

a) True

b) False

Flash Quiz

② A field defines behavior associated with the class

a) True

b) False

Flash Quiz

② A field defines behavior associated with the class

a) True

b) False

Flash Quiz

③ You can only have one method in a class

a) True

b) False

Flash Quiz

③ You can only have one method in a class

a) True

b) False

Flash Quiz

❖ Classes are models of things in the

real world; we can often identify

the potential classes by examining

what we need the app to do

How to identify classes?

What are the potential classes

we might need for this mapping

application to support route planning?

Mapping application with route planner

❖ Here are some possibilities –

remember we want to accurately

reflect the real world "things" we

are working with

How to identify how to make a class

Mapping application with route planner

✓ Map

✓ Current Position

✓ Calculated Route

✓ Street

✓ Turn

Flash Quiz

① Name 3 potential classes that might be defined for a chat application

Flash Quiz

A chat application that allows users to

converse using text messages

① Name 3 potential classes that might be defined for a chat application

Flash Quiz

A chat application that allows users to

converse using text messages

1. Message

2. User

3. Conversation

4. Connection

5. History

6. ????

② Name three pieces of data (fields) we might want in a chat message

Flash Quiz

② Name three pieces of data (fields) we might want in a chat message

Flash Quiz

1. Date/Time

2. Text

3. Emoticon(s)

4. To User

5. From User

6. Color

7. ???

③ Name three methods (behavior) we might need in a chat message

Flash Quiz #2

③ Name three methods (behavior) we might need in a chat message

Flash Quiz

1. Send

2. Take picture

3. Delete

4. Show keyboard

5. Reply

6. Add another person

7. Remove a person

8. Add attachment

9. Dial phone

10. ???

1. Define Object Oriented

Programming

2. Define classes and OOP

3. Define fields and methods

Summary

Create a class with fields to maintain

state

1. Create a class with fields

2. Instantiate objects of the class

3. Access the fields

Tasks

❖ A class defines a template and objects are instances of that template

What are classes and objects?

class Dog instances of class Dog

❖ A C# class has a name and a body, the body is delimited with { and }

How to define a class?

class BankAccount
{
...

}

Starts with

the word

class

You choose a name

(by convention, each

word is capitalized)

The fields and

methods will go

here

❖ You should put each class in its own file (not required, but

recommended)

Classes and files

class BankAccount
{
...

}

File name should be the same

as the class name with .cs

extension
BankAccount.cs

namespace Finance
{
class CreditCard
{
...

}
}

CreditCard.cs

namespace Finance
{
class BankAccount
{
...

}
}

BankAccount.cs

❖ A namespace groups related classes together, useful for organization

Classes and namespaces

Typical to put classes
inside a namespace
to help describe their

purpose

❖ Classes should be counted on to do one, well-understood thing

Class granularity

Customer

Name

Contact Information

Order

Item

Price

Shipping Address

Invoice

Customer

Order

Billing Address

Each class is self-contained,

and only describes one thing

in our system

Can create relationships

between classes to associate

data or behavior

Define a class and namespace to manage a road trip

Group Exercise

❖ Variables declared inside the class define the fields

Declaring fields

class BankAccount
{
string accountNumber;
double balance;
double interestRate;

...
}

Three independent

fields are included as

part of the
BankAccount class

❖ Some things in a class are

public – can and should

be seen by other classes

❖ Other things in a class are

private and should only

be visible inside the class

Visibility

❖ Access modifiers limit what fields and methods contained in the object

can be used from the outside

Access modifiers

public

▪ anyone can use

this field or

method

private

▪ only the class can

use this field or

method

▪ this is the default!

❖ Should carefully decide what visibility to make each field and method

❓Do other classes need access to this field, or is this field internal

information that only needs to be used inside the class itself to make

decisions?

❓ Is this method useful by other classes, or is it a method that helps

other methods inside the class do their job?

Well-designed classes (public vs. private)

Remember that the default visibility for classes, fields and methods is always private

Declaring fields (for real)

public class BankAccount
{
private string accountNumber;

public double Balance;
public double InterestRate;

...
}

private fields are

only accessible

from inside this class

public fields are

values that other

classes can access

from outside the
class, e.g. from Main

Typical to use

different

capitalization
for public
vs. private

private is used to "hide" implementation details, we will see more in a later course

public fields are not common, we will see why in a later course

❖ Use new to create instances (objects) of a class, each object gets its own

copy of the fields

How to create objects?

public class Program
{
public static void Main()
{

BankAccount savings = new BankAccount();
BankAccount checking = new BankAccount();
...

}
}

accountNumber
Balance
InterestRate

savings

accountNumber
Balance
InterestRate

checking

❖ Use the "dot operator" to access (read or change) the fields of an object

How to access fields?

public class Program
{

public static void Main()
{

BankAccount savings = new BankAccount();
BankAccount checking = new BankAccount();

savings.Balance = 100.00;
checking.Balance = 500.00;

double netWorth = savings.Balance + checking.Balance;
}

}

accountNumber
Balance 100.00
InterestRate

savings

accountNumber
Balance 500.00
InterestRate

checking

Apply the "dot operator" to an object to access its members

Flash Quiz

① An object defines an instance of a class

a) True

b) False

Flash Quiz

① An object defines an instance of a class

a) True

b) False

Flash Quiz

② To make a field accessible, you must add the ________ keyword

a) private

b) visible

c) public

d) None of the above

Flash Quiz

② To make a field accessible, you must add the ________ keyword

a) private

b) visible

c) public

d) None of the above

Flash Quiz

③ Select the missing code to complete the following program

Flash Quiz

public class Program
{

public static void Main()
{

BankAccount savings = new BankAccount();
BankAccount checking = new BankAccount();

savings.Balance = 100.00;
checking.Balance = 500.00;

double netWorth = ??????????
}

}

savings.Balance + checking.Balance;a)

savings->Balance + checking->Balance;b)

savings.Balance + checking.Balancec)

savings.Balance & checking.Balance;d)

③ Select the missing code to complete the following program

Flash Quiz

public class Program
{

public static void Main()
{

BankAccount savings = new BankAccount();
BankAccount checking = new BankAccount();

savings.Balance = 100.00;
checking.Balance = 500.00;

double netWorth = ??????????
}

}

savings.Balance + checking.Balance;a)

savings->Balance + checking->Balance;b)

savings.Balance + checking.Balancec)

savings.Balance & checking.Balance;d)

Planning a Road Trip

Individual Exercise

1. Create a class with fields

2. Instantiate objects of the class

3. Access the fields

Summary

Use enumerations

to define constant values

1. Declare enumeration type by using
the enum keyword

2. Use enum to define a set of named

integral constants assigned to a

variable

Tasks

public enum Colors
{

Red,
Orange,
Yellow,
Green,
Blue
Indigo,
Violet

}

❖ An enumeration is a special C# data type that defines a set of integral

constants as a group

What is an enumeration?

public enum Months
{

January, February,
March, April,
May, June,
July, August,
September, October,
November, December

}

Declare valid values

to use with this

enumeration, here

we declare the valid

English months

Looks a bit like a class

definition, except we

use the keyword
enum instead of class

❖ C# assigns sequential integer values to each enumeration value, starting

with zero (0) for the first one, every defined value has a numeric value

How enum works

public enum Months
{

January, February,
March, April,
May, June,
July, August,
September, October,
November, December

}

January = 0

February = 1

…

December = 11

C# actually works with the numeric values – so when you use an enumeration, it's like

using an integer value except that you are locked into a specific set of valid values

❖ Can assign specific values to each

enumeration

❖ Unassigned values are assigned the

prior value + 1

❖ Allows for duplicate numeric values

to define synonyms to an

enumeration value

Changing the enum values

public enum Months
{

January = 1, February,
March, April,
May, June = 6,
July, August,
September, October,
November, December = 12

}

Now our months would match

traditional numbering [1-12]We really only need to assign the first value if we just want them to run sequentially –

otherwise we can assign any number, in any order to any value

❖ Enumerations are validated by the compiler – this ensures we pass in a
correct value to a method or property that uses the enum

Using enums

public int CalculateAgeFromBirthday(
Months month, int day, int year)

{
if (month == Months.January) {
...

}
...

}
We get named values to compare

against – and C# ensures that it's

a Month, not just a number

❖ Using ToString() on an enumeration will return the text value

Printing an enumeration

Months december = Months.December; // really 12

Console.WriteLine("{0} is {1}",
december.ToString(), (int) december);

December is 12
Can also cast the enumeration

back to the underlying number –

this is then printed as the numeric

value

❖ C# allows you to cast numeric values to the appropriate enum type

using an explicit cast – this can be useful when converting back and

forth between numbers and enumerated values

Converting a number to an enum

Months june = (Months) 6;

Console.WriteLine("{0} is {1}",
june.ToString(), (int) june);

June is 6

Tell C# to assign the Months enumeration for "6"

❖ Excellent for intellisense and auto-completion

What are enums good for?

Enumerated values

are displayed in Intellisence

Only valid

values

Flash Quiz

① If you don't assign a numeric value to the first enumeration, what will

the default value be?

a) 0

b) 1

c) Undefined

Flash Quiz

① If you don't assign a numeric value to the first enumeration, what will

the default value be?

a) 0

b) 1

c) Undefined

Flash Quiz

② Calling the ToString() method on an enumeration will print the

numeric value

a) True

b) False

Flash Quiz

② Calling the ToString() method on an enumeration will print the

numeric value

a) True

b) False

Flash Quiz

1. Declare enumeration type by using
the enum keyword

2. Use enum to define a set of named

integral constants assigned to a

variable

Summary

public enum Colors
{

Red,
Orange,
Yellow,
Green,
Blue
Indigo,
Violet

}

❖ You now know how to define a new

class with data in C# to represent an

aspect of your program

❖ In the next course, we will look at

how to define behavior for that

class through methods

Where are we going from here?

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

