
Download class materials from

university.xamarin.com

Introduction to C#

CSC101

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Know the role of C# and Xamarin

2. Set up and run your first program

3. Learn the fundamentals of C#

Objectives

Know the role of C# and Xamarin

1. Define some common terms

2. Review the history of C#

3. Learn how C# fits into mobile

programming

Tasks

❖ People who write software call themselves programmers or developers

▪ (…or software engineers, or sometimes hackers)

Programmers

❖ A programming language is used to give precise instructions, called a

program, to a computer

What is a programming language?

int x = 3;
int y = 5;
int max;

if (x > y) {
max = x;

}
else {
max = y;

}

This is a valid C#

program.

Can you guess

what this does?

❖ A Central Processing Unit (CPU) executes your program's instructions

What is a CPU?

"multiply these two numbers"

"tell me which is larger"

"move this value over there"

"do this 10 times"

❖ CPUs understand high and low voltage, represented as values of 0s and 1s

It’s All A Big Analogy

1011010011010101
1111001001101000
1010101011000100
1100001011111000
1010100011011111
1101000000101101

❖ CPUs only understand 0s and 1s, not typical programming languages

CPU instruction format

int x = 3;
int y = 5;
int max;

if (x > y) {
max = x;

}
else {
max = y;

}

❖ A compiler converts your program to a format your CPU can execute

What is a compiler?

int x = 3;
int y = 5;
int max;

if (x > y) {
max = x;

}
else {
max = y;

}

10110100
11010101
11110010
01101000
10101010
11000100
11000010
11111000
10101000
11011111

Compiler

❖ You type your program into an Integrated Development Environment

(IDE)

Creating programs

Visual Studio for MacVisual Studio for Windows

2017

C# 7

❖ C# evolved out of work done on earlier languages such as C, C++, and

Java

A very quick history of C#

1969

C

(Bell labs)

1983

C++ /

Objective C

1995

Java

(Sun)

2000

C#

(Microsoft)

2006

C# 2

2007

C# 3

2010

C# 4

2012

C# 5

2015

C# 6

❖ Mobile Devices are programmed using different programming languages

Mobile programming

Android

uses

Java

Windows

uses C#

iOS uses

Objective-C or

Swift

To create the same application on all three platforms, requires writing

the same program three times in three different languages!

❖ Xamarin tools allow all four platforms to be programmed using C#

Xamarin and mobile programming

1. Define some common terms

2. Review the history of C#

3. Learn how C# fits into mobile

programming

Summary

Set up and run your first program

1. Set up your programming

environment

2. Create "Hello World" program and

run it

Tasks

❖ To create programs we continually move between three different phases

Cycles of developing a program

Design
Time

1
We design and write

our program using a

programming

language (C#)

2

We compile our

program in the IDE to

something the

computer understands

3

We run our

program on a

device to test it

and make sure

it does what it

should

Compile
Time

Run
Time

❖ Your program can display information

on the monitor and get input from the

keyboard

❖ Both of these operations are done

through the console

Keyboard and monitor

❖ C# can use Console.WriteLine to write one line of text to the

monitor

Console.WriteLine

Console.WriteLine("Hello, C#!");

Hello, C#!

Any text given to Console will be written

to the monitor's screen

Parts of your program in the IDE

Source file

Source Code

Solution

Project

Hello World

Group Exercise

1. Set up your programming

environment

2. Create "Hello World" program and

run it

Summary

Learn the fundamentals of C#

1. What is a C# Statement?

2. Understand types

3. Create variables and constants

4. Strings and white space

Tasks

❖ C# programs are a sequence of statements where each statement is a

complete programming instruction

Statements

int width = 3;
int height = 5;

int area = width *
height;

Console.WriteLine(area);

Statements end with

a semi-colon

Statements can span

multiple lines

❖ Comments are notes that are ignored by the compiler and come in two

styles: single line and blocks

Adding notes to your program

int foo = 25; // comments are ignored by C#

/* this will block off the following,
including the nested comment

int baz = 33; // the nested comment

which is a nice feature */

single-line comments start with two slashes

and are ignored until end of line

block comments

start with /* and

are ignored until

the closing */
comments

can be nested

❖ A type tells you the kind of object you have

What is a type?

int myAge = 25;

string myName = "Jesse Liberty";

Button okButton;

int holds numbers

Button is a UI widget

string holds text

❖ A variable is a named container for a value with a type

Types and variables

int age = 25;

name for this variable – referred to

as the identifier

type assigned value

❖ C# supports a variety of built-in types which you can use to represent

data in your program

Built-in types

True
&

False

Date
&

Time
NumbersText

not a complete list

Type What it holds For Example

int positive or negative whole numbers 102402

double positive or negative fractional numbers 3.141592653589793

float positive or negative smaller fractional numbers 3.1415926

short positive or negative smaller whole numbers -4096

ushort positive small whole numbers 40960

long positive or negative large whole numbers 102402454

Numeric types

❖ True / false values can be represented
with the bool type

True / false values

bool amHappy = true;

bool amSad = false;

George Boole, inventor of Boolean Algebra,

mathematician, philosopher. 1815-1864

❖ Strings are a type which hold a series of characters

Working with strings

string name = "Jesse";
string favoriteColor = "blue";

favoriteColor = "red";

double-quotes are used to surround string literals

❖ Strings can be combined together with "+" to create a brand new string

Combining strings

string first = "hello";
string second = "world";

string combined = first + " " + second; // "hello world"

new string contains the value "hello world"

❖ Can define single character values with char type

Working with single characters

char firstInitial = 'J';

char firstLetter = 'a';

values are surrounded in single

quotes and can be upper or lower

case

❖ Use backslash "\" to indicate an escape character – this changes the

meaning of the subsequent character and can be used to create non-

printable values

Creating special characters

char tab = '\t';
string quote = "\"";
char newLine = '\n';
string carriageReturn = "\r";

❖ Variables hold values that can be used and updated as the program

runs

Working with variables

int age = 45;
int thisYear = DateTime.Now.Year;
int yearBorn = thisYear - age;

variables provide a "holding" place for values we use in our programs

such as calculations

❖ Console.WriteLine can output text to the display and will

automatically convert non-text variables into text

Displaying variables with Console

int age = 45;
int thisYear = DateTime.Now.Year;
int yearBorn = thisYear - age;

Console.WriteLine("You were born in " + yearBorn);

this numeric value is being converted to a text value so it can

be combined to the string and then shown on the display

❖ Console.WriteLine also supports replacement values which can be

added into the output, the values are passed in a comma-separated list

along with the text to display

Complex Console output

string name = "Jesse";

int age = 45;

Console.WriteLine("My name is {0} and I am {1} years old.",

name, age);

My name is Jesse and I am 45 years old.

❖ Compiler will generate an error when you attempt to assign a value

which is inappropriate for the type – this helps avoid errors/bugs in your

programs

Type safety

int age = 45; // ok

int myAge = "Jesse"; // error!

error – attempting to assign a textual value (string)

to a numeric container (int)

This is sometimes referred to as static typing because the compiler checks the values

before the program is allowed to execute, vs. checking the value while it executes

❖ Identifiers and language keywords in C# are case sensitive

Naming your variables

int age = 24;
int Age = 35;

These are distinct variables in C#,

each capable of holding a different value

Note: the code shown is fine for the C# compiler, but could be confusing to humans who

are reading the code, should avoid using the same names for variables if possible!

❖ Two common conventions used for variable identifiers

The value in consistent case conventions

int myAge = 24;
Camel case: first letter

lower case (humps for

new words)

int MyAge = 35;
Pascal case: first letter

upper case (also

humps for new words)

int thisisconfusing = 22;

int this_is_yucky = 44;

Pascal and Camel case

preferred for readability

❖ Whitespace characters are <space>, <tab>, <new line> and may or

may not be significant in your code

Dealing with whitespace

int myAge = 25; // Ok
int myAge =

25; // Ok
int myAge=25; // Ok

intmyAge=25; // No

string myName = "Thomas Jefferson";

Extra whitespace is

always okay

Missing whitespace

may not be okay

whitespace is always preserved in strings

Write a program that creates a constant, a variable,

a string and displays their values to the console

Group Exercise

Flash Quiz

① Can a variable change its value while the program is running

a) Yes

b) No

Flash Quiz

① Can a variable change its value while the program is running

a) Yes

b) No

Flash Quiz

② Does white space matter in a program?

a) Yes

b) No

c) Sometimes

Flash Quiz

② Does white space matter in a program?

a) Yes

b) No

c) Sometimes

Flash Quiz

❖ An expression is a statement that “returns” a value

▪ The expression's value is often assigned to a variable

Expressions

int sum = 5 + 3;

int x = 5, y = 3;
sum = x + y;

bool isMale = true;

int z = y = 5;

can initialize two values using comma

can assign multiple variables to same value

❖ Math operators are used to perform

mathematical operations with

constants and variables

▪ + for addition

▪ − for subtraction

▪ * for multiplication

▪ / for division

▪ % for modulo division

Mathematical calculations

int x = 5, y = 11;

int sum = y + x; // 16

int diff = y - x; // 6

int product = y * x; // 55

int quotient = y / x; // 2

int remainder = y % x; // 1

❖ Division of integers returns a whole number (you lose the “remainder”)

Integer vs. floating point math

int x = 5, y = 11;
double z = y / x; // 2

double x = 5, y = 11;
double z = y / x; // 2.2

int x = 5, y = 11;
double z = y % x; // 1

To get fractions, you must divide
double or float values

To get remainder, use

modulus (%)

❖ C# allows you to change a variables value after it has been assigned

Changing a value

int x = 5; // start out as 5

x = 10; // x is now 10

x = x + 1; // x is now 11 (10 + 1)

x = x * 10; // x is now 110 (11 x 10)

Note: it's important to keep in mind that we are changing variables here. These are not

mathematical formulas being defined.

❖ Shorthand syntax available to perform a math operation and assign

result back to a variable

Compound assignments

int x = 5;

x = x + 1; // x is now 6

x += 1; // x is now 7

x -= 1; // x is now 6

these two

statements do

the same thing

– add "1" to x

❖ Prefix operator allows you to add or subtract "1" from a value and then

assign the result to a second variable

Prefix operator

int x = 5, y = 0, z = 0;

y = ++x; // x = 6, y = 6 increment and then assign

z = --y; // y = 5, z = 5 decrement and then assign

Notation is to put increment (++) or decrement (--) in front of the

variable you want to change

❖ Postfix operator allows you to assign a variables value to a second

variable and then add or subtract "1" from the original variable, in this

case the assignment occurs before the increment or decrement

Postfix operator

int x = 5, y = 0, z = 0;

y = ++x; // x = 6, y = 6 increment and then assign
y = x++; // x = 6, y = 5 assign and then increment

z = --y; // y = 5, z = 5 decrement and then assign
z = y--; // y = 4, z = 5 assign and then decrement

Put increment (++) or decrement (--) after the variable you want to change

❖ Comparison operators allow you to

compare one value to another and
return a true or false (boolean)

response

▪ > greater than

▪ >= greater than or equal to

▪ < less than

▪ <= less than or equal to

▪ == equal to

Comparative operators

int x = 5, y = 10, z = 10;

y > x; // true

y < x; // false

x >= z; // false

y == z; // true

Flash Quiz

① In the following code, what is the value of z?

a) 3.3

b) 3 Remainder 1

c) 3

d) 1

Flash Quiz

int x = 3, y = 10;

int z = y / x;

① In the following code, what is the value of z?

a) 3.3

b) 3 Remainder 1

c) 3

d) 1

Flash Quiz

int x = 3, y = 10;

int z = y / x;

② In the following code fragment, what is the value of z?

a) 3.3

b) 3 Remainder 1

c) 3

d) 1

Flash Quiz

int x = 3, y = 10;

int z = y % x;

② In the following code fragment, what is the value of z?

a) 3.3

b) 3 Remainder 1

c) 3

d) 1

Flash Quiz

int x = 3, y = 10;

int z = y % x;

1. What is a C# Statement?

2. Understand types

3. Create variables and constants

4. Strings and white space

Summary

❖ You now know some of the

basic fundamental ideas

behind programming and the

C# programming language

❖ In the next course, we will

examine how to make

decisions in our programs

through branching and loops

Where are we going from here?

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

