
Download class materials from 

university.xamarin.com

Building an Azure 

Mobile App Service

AZR110



Information in this document is subject to change without notice. The example companies, 

organizations, products, people, and events depicted herein are fictitious. No association with 

any real company, organization, product, person or event is intended or should be inferred. 

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other 

intellectual property rights covering subject matter in this document. Except as expressly 

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document 

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual 

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other 

countries.

Other product and company names herein may be the trademarks of their respective owners.



1. Create the mobile app service

2. Add a database to your back end

Objectives



Create the mobile app service



1. Explore the mobile features 

provided by Azure App Services

2. Create a new Mobile app in the 

Azure Management portal

3. Create a new Mobile app in Visual 

Studio

4. Setup deployment publishing

Tasks



❖ Azure App Services is a PaaS offering for web, mobile and integration 

scenarios

Reminder: Azure Apps

Web App
Used to create a hosted IIS-based website

Function App
Server-side scheduled jobs

Mobile App
WebAPI + data app for apps using Mobile Client SDK

API App
Used to create a hosted RESTful web service

Logic App
Workflow integration with data conversion + logic

Could also use API App and access the service using the techniques shown in XAM150



❖ Azure Mobile App provides a set of pre-built services you can activate 

for your mobile app; exposed using web service endpoints

Features of an Azure Mobile app

REST

D
a
ta

SQL MongoTables Blobs

Facebook Google ADA
u

th

Twitter MS

N
o

ti
fy

WNS & MPNS APNS GCM Hubs

C
lie

n
t 

S
D

K



❖ Azure App services support two back-end technologies on top of IIS, 

can use either one to define your service code

Implementing the back-end service

Uses JavaScript to define and 

customize server endpoints 

and point-and-click creation

but lacks type safety - This is 

the default when you use the 

portal to create your app



❖ Create a new Mobile App using the template under Web + Mobile in 

the management portal (https://portal.azure.com)

Recall: creating an app in the portal

https://portal.azure.com/


Defining the app

Must supply a globally unique name to 

create the public URL

Select Azure billing subscription to use

Should create a new resource group to tie all the app 

elements together; can also use an existing group

Must select the service tier and regional 

location where service will be hosted; can 

change service plan as you shift from 

development > production



❖ Once created, the mobile app dashboard will display URL information 

needed to connect the mobile app to the service

Getting the mobile URL



❖ Can also generate a node.js back end on your local machine from the 

command line using Yeoman and then publish to Azure

Creating a node.js back end with CLI

~ sudo npm install -g yo generator-azure-mobile-apps
...
~ yo azure-mobile-apps

Install the generator (macOS / Linux / WinBash)

Generate a new Azure mobile app in the current folder – can then 

upload into Azure using FTP or publishing deployment



❖ Can manually publish service using FTP; credentials can be set in the 

Publishing settings of your app portal and URL is available from dashboard

Manually publishing to Azure (FTP)



❖ Can manually publish service using FTP; credentials can be set in the 

Publishing settings of your app portal and URL is available from dashboard

Manually publishing to Azure (FTP)

Web server files must be placed 

into the /site/wwwroot folder



❖ Azure App services support two back-end technologies on top of IIS, 

can use either one to define your service code

Implementing the back-end service

Supports a fully typed 

programming model 

(.NET) with a robust 

and powerful 

framework but requires 

more code to setup
ASP .NET

TM



❖ Must install the Azure SDK for .NET for Visual Studio from 

azure.microsoft.com/downloads to get the components, templates and 

simulators for Azure

Install the Azure SDK for VS



❖ Service back end can be built on top of traditional ASP.NET or on the 

newer ASP.NET Core platform

.NET Platforms

ASP.NET 4.6 ASP.NET Core 1.0

.NET Framework 4.6 .NET Core 1.0

.NET Framework Libraries .NET Core Libraries

Compilers and runtime components (C#, Roslyn, etc.)



❖ Use the Azure Mobile App template to create a web service in VS

Creating an Azure App service in .NET

Can be configured to 

create the app in 

Azure if you haven't 

done it already



❖ When VS creates the app, 

it lets you set all the same 

options found in the 

Azure portal wizard

❖ Adds web deployment 

record to the solution to 

let you manually publish 

to Azure with Build > 

Publish menu option

Defining the Azure app in VS



❖ Can download or reset the publishing profile used by WebDeploy

through the More menu in the app portal

Resetting the publishing credentials

Beware: passwords in the downloaded publishing profile are stored in clear text!



❖ Template creates an ASP.NET starter app 

❖ Includes two controllers – one for a 

database table and another for a basic 

web service

❖ Defines a Data Transfer Object (DTO) to 

hold a TodoItem

Visual Studio server project



❖ Once the service is started, it will respond to GET requests on the URL

Check your service



Create a survey app service in Azure

Individual Exercise



❖ Azure supports several publishing models to suite any project size

Publishing to Azure

Continuous Deployment
(TFS, Github or BitBucket)

Manual push 

from client

Manual push from cloud 

or local Git
(OneDrive/Dropbox or Git/Mercurial)

Manual push 

from VS



❖ Can setup a single publishing source 

through the deployment source option in 

your app publishing properties

Setting up a deployment source



❖ Can configure Azure size to automatically pull changes from TFS, Github

or BitBucket when a new commit is detected

Continuous development

Developer

Source Control
TFS

Github

BitBucket

Commits

Azure 

deployment 

engine (kudu)

Pull changes Publish site

My service

build



❖ Depending on your service plan, you can define deployment slots which 

let you create copies of your site on unique URLs and then swap them 

into production with zero down time

Configuring zero downtime



❖ When using the ASP.NET back end, 

you can debug your service code 

through the Cloud Explorer pane; 

right-click on the Web App and 

select Attach Debugger

❖ Must publish a DEBUG build first to 

get symbolic information –

otherwise breakpoints won't resolve

Debugging your app service



1. Explore the mobile features 

provided by Azure App Services

2. Create a new Mobile app in the 

Azure Management portal

3. Create a new Mobile app in Visual 

Studio

4. Setup deployment publishing

Summary



Add a database to your back end



1. Decide the proper type of 

database to add

2. Create the database + connection

3. Create one or more tables

4. Populate the database (optional)

Tasks



❖ Most applications will utilize some sort of server-side data - there are 

several questions to think about as you decide how to store the data

Supplying data to your app

What type of data is it? 

How is it queried?

How much data will you 

be storing?
Is the data binary?



❖ Azure provides several managed storage choices for apps

Azure data styles

SQL Database

(relational)

Traditional SQL Server consisting of 

related tables with columns and 

rows; supports complex queries 

and everything SQL Server has to 

offer (e.g. transactions, indexes, 

constraints, stored procedures, etc.)



❖ Azure provides several managed storage choices for apps

Azure data styles

SQL Database

(relational)

Table Storage

(NoSQL key/value)

Fast, indexed table 

retrieval of structured 

NoSQL data; Table 

storage tends to cost less 

than SQL storage for 

similar volumes



❖ Azure provides several managed storage choices for apps

Azure data styles

SQL Database

(relational)

Table Storage

(NoSQL key/value)

Large and unstructured 

file storage; useful for 

storing media assets and 

other bits of opaque non-

textual data

Blob Storage

(unstructured files)



❖ Azure provides several managed storage choices for apps

Azure data styles

SQL Database

(relational)

Table Storage

(NoSQL key/value)

Blob Storage

(unstructured files)



❖ Must have a SQL Server database resource in your Azure portal

Creating a SQL database in Azure



❖ Must add a connection string to the app service; default expected name 

is MS_TableConnectionString

Adding a SQL database to your app



❖ Can also add a SQL database to your application when created through 

Visual Studio as part of the Azure setup; this must be done at app 

creation time using the Services tab on the Create App Service dialog

Adding a SQL database with VS



Add a database to your Survey service

Individual Exercise



❖ Depending on your back-end, the process for adding a new table will 

be different however the exposed endpoint will be the same

Adding a table to your mobile service

Node.js provides a no-code option which is configurable from the 

Azure management portal; includes some basic extension points 

for the table operations (read/insert/update/delete)

ASP.NET requires a controller be created to access the database 

and expose it over a RESTful endpoint; provides complete control 

over the endpoint and server-side logic applied



❖ ASP.NET projects use a controller to expose a SQL server table as an 

OData web service endpoint; requires two things:

Adding a table to a .NET back end

Data Transfer Object

(DTO)
1

Table Controller
(TableController<T>)

2



❖ Data Transfer Objects (DTO) provide the shape of the data that will be 

passed to the client

Step 1: Define the DTO

public class TodoItem : EntityData
{

public string Text { get; set; }
public bool Complete { get; set; }

}

Must derive from Azure SDK base class 

which provides DB access support

You add custom public properties to define your 

custom data to be stored in the database



❖ EntityData base class 

provides primary key and 

required synchronization 

data which is used/expected 

by the client/server 

communication

❖ Can add these columns to 

an existing DB, or let EF 

code-first create them which 

is the default behavior

What is EntityData?
public abstract class EntityData : ITableData
{

[Key, TableColumn(TableColumnType.Id)]
public string Id { get; set; }

[DatabaseGenerated(DatabaseGeneratedOption.Identity)]
[Index(IsClustered = true)]
[TableColumn(TableColumnType.CreatedAt)]
public DateTimeOffset? CreatedAt { get; set; }

[TableColumn(TableColumnType.Deleted)]
public bool Deleted { get; set; }

[DatabaseGenerated(DatabaseGeneratedOption.Computed)]
[TableColumn(TableColumnType.UpdatedAt)]
public DateTimeOffset? UpdatedAt { get; set; }

[TableColumn(TableColumnType.Version), Timestamp]
public byte[] Version { get; set; }

}



❖ DTO is mapped to a single database table using Entity Framework (EF); 

rows are exposed as instances of the DTO

Mapping the DTO to a DB table

public class TodoItem : EntityData
{

public string Text { get; set; }
public bool Complete { get; set; }

}

E
n
ti
ty

 

Fr
a
m

e
w

o
rk

SQL

Server

Id Text Complete …

1 Get the Milk False …

2 Mow the lawn True …

…

TodoItem

Property names are matched to column names

Table name is determined by class name



❖ Can apply attributes to customize how the DTO is mapped to the table

Customizing the mapping

[Table("tasks")]
public class TodoItem : EntityData
{

public string Text { get; set; }
[Column("is_complete"), Index]
public bool Complete { get; set; }
[NotMapped]
public bool Tagged { get; set; }

}

Use tasks table

Specify the table 

column name

Add an index for 

this column

Ignore property



❖ Can change the shape of the object passed over the wire using standard 

JSON attributes; remember to coordinate with the client!

JSON attributes

public class TodoItem : EntityData
{

[JsonProperty(Name="todo")]
public string Text { get; set; }
public bool Complete { get; set; }

}

{
"id": ...
...

"complete": false,   
"todo": "My task"

},

You can use either the JSON.net attribute (as shown here), or the data annotation 
(DataMember) attribute to change the names of the passed JSON fields



❖ Must define a new controller to provide HTTP access to your table –

easiest way to do this in VS is to use the Add Scaffold wizard

Step 2: define the Table Controller

Select Controller from the Add menu and 

then select Azure Mobile Apps Table 

Controller from the dialog



❖ Table Controller provides the REST endpoint + EF database connection 

for a single DTO through a set of methods

What is a Table Controller?

public class TodoItemController : TableController<TodoItem>
{

protected override void Initialize(HttpControllerContext context) {...}
// GET tables/TodoItem
public IQueryable<TodoItem> GetAllTodoItems() {...}
// GET tables/TodoItem/{id}
public SingleResult<TodoItem> GetTodoItem(string id) {...}
// PATCH tables/TodoItem/{id}
public Task<TodoItem> PatchTodoItem(string id, Delta<TodoItem> patch) {...}
// POST tables/TodoItem
public async Task<IHttpActionResult> PostTodoItem(TodoItem item) {...}
// DELETE tables/TodoItem/{id}
public Task DeleteTodoItem(string id) {...}

}



❖ Initialization method is responsible for creating the domain manager

which maps and implements all the CRUD operations for the database 

and table used by the DTO

Table Controller: initialize

public class TodoItemController : TableController<TodoItem>
{

protected override void Initialize(HttpControllerContext context)
{

base.Initialize(context);
MobileServiceContext dbContext = new MobileServiceContext();
DomainManager = new EntityDomainManager<TodoItem>(dbContext, Request);

}
...

}



❖ Table controller exposes an async method for each supported HTTP 

verb and (by default) delegates work to base class methods

Table Controller: actions

public class TodoItemController : TableController<TodoItem>
{

}

public IQueryable<TodoItem> GetAllTodoItems() { return base.Query(); }

public async Task<IHttpActionResult> PostTodoItem(TodoItem item) {
TodoItem current = await base.InsertAsync(item);
return base.CreatedAtRoute("Tables", new { id = current.Id }, current);

}

public Task DeleteTodoItem(string id) {
return base.DeleteAsync(id);

}



❖ Method name prefix (Get/Post/Patch/Delete) is required to infer proper 

HTTP action; can use WebApi attributes to customize action/name

Customizing the method names

public class TodoItemController : TableController<TodoItem>
{

[HttpGet]
public IQueryable<TodoItem> RetrieveAll() {...}
[HttpGet]
public SingleResult<TodoItem> RetrieveOne(string id) {...}
[HttpPatch]
public Task<TodoItem> Update(string id, Delta<TodoItem> patch) {...}
[HttpPost]
public async Task<IHttpActionResult> Add(TodoItem item) {...}
[HttpDelete]
public Task Remove(string id) {...}

}



❖ DELETE is a destructive operation which must be propagated to every 

client; tables can be configured to use a soft delete model where a column 

in the database is used to indicate that the record has been deleted

Dealing with DELETE

column is always present 

regardless of whether 

the server enables soft 

delete or not



❖ Soft delete means that records are never deleted from the table; this has 

benefits and drawbacks which you should weigh to decide whether you 

want this feature

Do I need soft delete?

Pros Cons

Simplifies offline synchronization Databases tend to require more space

Allows records to be "undeleted" Id must be a string type and not reused

Useful for audit or requirements where 

records cannot be removed

Must write a server-side Azure Function 

or SQL trigger to periodically purge 

records



❖ Must enable soft delete for each table through the 

EntityDomainManager constructor in your table controller initialization

ASP.NET: turning on soft delete

public class TodoItemController : TableController<TodoItem>
{

protected override void Initialize(HttpControllerContext controllerContext)
{

base.Initialize(controllerContext);
MobileServiceContext context = new MobileServiceContext();
DomainManager = new EntityDomainManager<TodoItem>(

context, Request, enableSoftDelete: true);
}
...

}



❖ Can expose traditional REST endpoints with ASP.NET Web API by 

deriving from the ApiController base class 

Defining a custom API controller

[MobileAppController]
public class HelloController : ApiController
{

[HttpGet]
public string SayHello() {

return "Hello, Azure!";
}
...

}

Should decorate with 
[MobileAppController]

attribute to integrate with Azure 

service platform



Flash Quiz



① SQL tables can be exposed from either node.js or ASP.NET back ends

a) True

b) False

Flash Quiz



① SQL tables can be exposed from either node.js or ASP.NET back ends

a) True

b) False

Flash Quiz



② You can define the schema for exposed tables through the Azure portal 

when using an ASP.NET back end

a) True

b) False

Flash Quiz



② You can define the schema for exposed tables through the Azure portal 

when using an ASP.NET back end

a) True

b) False

Flash Quiz



❖ Node.js back end provides "no-code" web access to SQL data through 

the easy tables API which has several key benefits

Adding a table to a node.js back end

Uses SQL Azure as 

the database storage

Exposes OData 

endpoint with 

no additional 

code required

Can define and 

change DB 

schema in Azure 

portal

Supports server-

side logic for 

database 

operations



❖ Easy tables must be configured for your mobile app in the Azure portal to 

expose the endpoint the app will use to communicate with the database

How to configure Easy tables API

Portal will do all the hard 

work for you – just click on 

the header to get the list of 

steps required



❖ Two required steps to turn on the easy tables support in your app 

service, portal will walk you through both as part of the setup

Setting up Easy table support

Create or select the SQL 

database and the connection 

string

1

App service must be configured 

to use easy tables – this is a 

one-time operation that 

configures the web server

2



❖ Once a SQL database connection is setup, you can add one or more 

Easy table definitions to the database using two approaches

Creating Easy tables

Azure Portal Web server configuration



❖ Can use the Azure portal to add new tables 

to your associated SQL database – this is 

the easiest option since it's GUI driven

❖ Must provide a locally-unique table name 

and define the permissions for CRUD 

operations (defaults to anonymous)

Using the Azure portal



❖ Just like ASP.NET, each table has 5 required columns to identify each row 

and support offline synchronization

Schema for an Easy table

Column SQL Type Description

id NVARCHAR(255) Unique identifier for this record (typically GUID)

createdAt DATETIMEOFFSET Date/time that this record was initially added

updatedAt DATETIMEOFFSET Last date/time that this record was changed

version TIMESTAMP Version of this record, used for synchronization

deleted BIT Set if this record has been deleted, used for sync.

You can add these columns to an existing SQL table to allow it to be used with the API –

see http://bit.ly/2aANOTz for more information  on the necessary steps

http://bit.ly/2aANOTz


❖ You must define additional columns using the Easy Tables blade to store 

your app-specific data, use the Manage schema option in the toolbar to 

open the schema editor

Creating unique data columns



❖ Each column has a unique column name (traditional naming rules apply) 

and a column type which is translated to a SQL data type

Adding a new column

String nvarchar(max)

Number float(53)

Date datetimeoffset(7)

Boolean bit

Columns cannot be altered once you have created them so choose carefully!



❖ Can delete a column or create a DB index on it through the row context 

menu; deleting and re-creating a column is your portal workaround to 

changing the column definition

Deleting columns



❖ App service exposes a hard-coded endpoint (/tables/<tablename>) to 

allow applications to perform DB queries and operations using HTTP

Accessing tables from a client

GET /tables/mytable

JSON response
Database

Async query

Data rows

ASP.NET or node 

website running in IIS

Mobile Client



❖ Can use a REST client to interact and test the endpoint; mandatory 

HTTP header ZUMO-API-VERSION: 2.0.0 must be included

Testing the service endpoint

Postman

(free Chrome plugin)

Paw

(macOS app)

REST client

(Firefox plugin)

Fiddler

(Windows network 

analyzer)

curl -g -H ZUMO-API-VERSION:2.0.0 <site>/tables/{tablename}



❖ POST (insert), PATCH (update) and DELETE require an HTTP body 

encoded in JSON with a Content-Type set to application/json

Inserting, Updating and Deleting

POST /tables/{tablename} HTTP/1.1
Host: <site>
ZUMO-API-VERSION: 2.0.0
Content-Type: application/json

<JSON data goes here>



Add a new table into the Survey service

Individual Exercise



❖ Node.js looks in hardcoded tables folder for Easy Table definitions

Easy Table web structure



❖ Can add or edit tables to Easy Table 

configuration by manipulating the 

files in the tables folder

❖ Server will create/edit your tables 

the next time an HTTP request is 

processed

Adding new Easy tables to the server



❖ Easy table is defined by two files; the filename is used to locate the 

proper SQL table and determine the final URL endpoint

Easy table definition

Here we are 

defining the 

todoitem table & 

/tables/todoitem

endpoint



❖ Can also edit the scripts backing an Easy Table through the Azure portal

Editing existing Easy Tables

Can edit the already-created 

JSON files directly from the 

portal through the Edit Script

toolbar button in each defined 

Easy Table blade

Opens site in VS 

online editor



Creating a new table in JSON

JSON description file provides default 

property values for table settings

{
"softDelete": true,
"autoIncrement": false,
"insert": {
"access": "anonymous"

},
"update": {
"access": "anonymous"

},
"delete": {
"access": "anonymous"

},
"read": {
"access": "anonymous"

},
"undelete": {
"access": "anonymous"

}
}

{table}.json



Creating a new table in JSON

JS table script adds the table endpoint and 

provides a customization point for table 

operations

{
"softDelete": true,
"autoIncrement": false,
"insert": {
"access": "anonymous"

},
"update": {
"access": "anonymous"

},
"delete": {
"access": "anonymous"

},
"read": {
"access": "anonymous"

},
"undelete": {
"access": "anonymous"

}
}

{table}.json

var app = require('azure-mobile-apps');
// Create a new easy table definition
var table = app.table();
// Never allow updates to records
table.update.access = 'disabled'; 

module.exports = table;

{table}.js



❖ Can define column structure as part of the table controller (.js) file

Defining custom columns

var app = require('azure-mobile-apps');
var table = app.table();

// Define our columns for the DB table (defined as JSON)
table.columns = {

"text": "string",
"isPrivate": "boolean"

};
// Turn off dynamic schema
table.dynamicSchema = false;

module.exports = table;



❖ Node.js back end enables soft delete by default – can turn it off by 

changing the softDelete flag on the specific table

Turning off soft delete

{
"softDelete": false,
"autoIncrement": false,
...

}

Can change the softDelete flag in the configuration or table controller source

var table = module.exports = 
require('azure-mobile-apps')

.table();
table.softDelete = false;
...

or



❖ Tables are created empty by default – there are several ways to pre-

populate the SQL data; either as part of creation, or post-creation

Populating the DB with data

Define schema and insert 

data from a comma-

separate-value file

SQL Management StudioCode-first seed method



❖ Add From CSV option allows you to define the table structure and

import records into the database with Easy Tables

Populating Easy Tables

Name,Email,Phone
Mark Smith,mark@julmar.com,9025551212
John Doe,jodo@anonymous.com,2145551212
Jane Austin,jane@greengables.com,9725551212

person.csv

File must have a terminating CR/LF on the 

final line or that line will not be imported



❖ ASP.NET and EF use an initializer method to create and seed a table 

when it does not exist in the target database

Populating Entity Framework

public class MobileServiceInitializer
: CreateDatabaseIfNotExists<MobileServiceContext>

{
protected override void Seed(MobileServiceContext context)
{

... // TODO: add items to DB context here
}

}

Add code to populate data using passed DbContext to 

the existing MobileServiceInitializer class



❖ Can add data directly into the underlying SQL database by accessing it 

through SQL Server credentials available from SQL database blade

Populating the table with data



❖ By default, direct SQL 

access is limited to 

Azure, but you can 

change the firewall 

rules to allow external 

access

Changing the firewall rules



❖ Azure sets up SQL Server authentication – just need server URL and 

user/password you setup the database with 

SQL Management Studio



Create and populate our survey questions in the Azure portal

Individual Exercise



❖ Can monitor the server-side requests through the app portal blade

Monitoring the server side traffic



❖ Can enable IIS diagnostic logging in 

the app to get fine-grained details

Get diagnostic details



❖ Use the Log Stream feature to watch the app + IIS logs on the portal

Watching the (almost) live stream

2016-08-04 13:50:55 GET /tables/diary_entry - 80 –
xx.xx.xx.xx mydiary.azurewebsites.net 200 0 0 378 
285 94 
2016-08-04 13:52:49 POST /tables/diary_entry - 80 –
xx.xx.xx.xx mydiary.azurewebsites.net 201 0 0 766 
1121 31 
2016-08-04 13:53:15 DELETE /tables/diary_entry - 80 
– xx.xx.xx.xx mydiary.azurewebsites.net 200 0 0 570 
1313 142



❖ Several other tools available in the 

portal to collect a variety of 

performance, runtime and historical 

data about your app

❖ App can also be configured to 

collect data from Application 

Insights and New Relic

Collecting other details



1. Decide the proper type of 

database to add

2. Create the database + connection

3. Create one or more tables

4. Populate the database (optional)

Summary



❖ We've covered the basics of 

building an Azure App mobile 

service using either node or 

ASP.NET

❖ The next set of classes will 

focus on the client side and 

how to consume the service 

from a Xamarin application

Next Steps



Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile


