
Download class materials from

university.xamarin.com

RecyclerView and

CardView in Android

AND115

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2017 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Display a collection using
RecyclerView

2. Update the UI after a data change

3. Respond to user actions

4. Show data in a CardView

Objectives

Display a collection using

RecyclerView

1. Create a RecyclerView

2. Select a layout manager

3. Code an item-layout file

4. Code a view holder

5. Code an adapter

Tasks

❖ Apps often need to display collections of data

Motivation [collections]

Typical variations:

▪ vertical or horizontal

▪ list or grid

❖ Collections are often too large to display the

entire dataset at once, items must be scrolled

into view

Motivation [efficiency]

App must handle this efficiently to

get smooth scrolling and minimize

pressure on the garbage collector

❖ RecyclerView displays a

collection, it is optimized to handle

large datasets efficiently by reusing

views and requiring view-holders

❖ Handles scrolling and view recycling

❖ Pluggable layout policy to support

various layouts

What is RecyclerView?

❖ RecyclerView can generally replace both ListView and GridView,

but does not offer exactly the same features

RecyclerView vs. legacy views

RecyclerView ListView/GridView

List or grid layout yes yes

View recycling yes yes

Add/remove animations yes no

View-holder pattern required optional

Item click event no yes

Predefined adapters no yes

Fast scroll/indexer no yes

❖ RecyclerView is in a support library which must be added using the

Xamarin Component Store, or Nuget (preferred)

RecyclerView packaging

<android.support.v7.widget.RecyclerView>
...

</android.support.v7.widget.RecyclerView>

2. Qualify the name1. Add the Xamarin Component

or the NuGet package

Create a RecyclerView

Group Exercise

❖ Displaying a collection is a collaboration among several classes

Architecture

RecyclerView

handles scrolling

and manages a

pool of views

LayoutManager
positions items

ViewHolder

Adapter

MyLayout.axml

defines item layout

stores view references,

detects item-click

inflates layout,

binds data to views,

reports item-click

❖ Displaying a collection is a collaboration among several classes

Architecture

RecyclerView

handles scrolling

and manages a

pool of views

LayoutManager
positions items

ViewHolder

Adapter

MyLayout.axml

defines item layout

stores view references,

detects item-click

inflates layout,

binds data to views,

reports item-click

Your

code

❖ A layout manager arranges your items in the RecyclerView

What is a layout manager?

Layout manager

calculates the

size and position

of each item

❖ Android supplies layout managers for a few common layout styles

Predefined layout managers

LinearLayoutManager GridLayoutManager StaggeredGridLayoutManager

❖ LinearLayoutManager arranges your items in a single column or row

LinearLayoutManager [overview]

var lm = new LinearLayoutManager(this, LinearLayoutManager.Vertical, false);

Context Orientation Reverse (e.g. in

a vertical list,

it would layout

items from

bottom to top)

❖ LinearLayoutManager lets you keep items uniform or have them vary

LinearLayoutManager [item size]

In a vertical list, row

height is based on item

height and can vary

In a vertical list, row width is taken from

the width of the containing RecyclerView,

your item does not need to occupy the

entire row, but it will be forced to the row

width if it is too large

❖ GridLayoutManager arranges your items in a grid

GridLayoutManager [overview]

Context Orientation Reverse (e.g. in

a vertical grid,

it would layout

items from

bottom to top)

var lm = new GridLayoutManager(this, 3, GridLayoutManager.Vertical, false);

Number of spans (e.g. number of columns for a vertical grid)

❖ GridLayoutManager distributes the space uniformly along one axis

while the other axis can vary based on the size of your items

GridLayoutManager [default sizing]

In a vertical grid, items are

forced to uniform width

In a vertical grid, row heights

can vary, height is taken from

the tallest item in each row

❖ GridLayoutManager allows items to occupy multiple spans

GridLayoutManager [spans]

public class MySpanLookup : GridLayoutManager.SpanSizeLookup
{

public override int GetSpanSize(int position) { ... }
}

You write this class and load an instance into a grid layout manager

Your code decides the span count for each of your items

Span size is 2

❖ StaggeredGridLayoutManager arranges your items in a compact

grid

StaggeredGridLayoutManager [overview]

Orientation

var sglm = new StaggeredGridLayoutManager(3, StaggeredGridLayoutManager.Vertical);

Number of spans (e.g. number

of columns for a vertical grid)

❖ StaggeredGridLayoutManager only modifies your item size in one

dimension

StaggeredGridLayoutManager [sizing]

Items keep their natural height

in a vertical layout, the rows

are not clearly delineated

since the items are not forced

to be the same height

Items are forced to uniform

width in a vertical layout

❖ StaggeredGridLayoutManager allows items to occupy an entire axis

StaggeredGridLayoutManager [full span]

Set to full-span in your

adapter using the

layout parameters

public override void OnBindViewHolder(RecyclerView.ViewHolder holder, int position)
{ ...

var lp = holder.ItemView.LayoutParameters.JavaCast<StaggeredGridLayoutManager.LayoutParams>();
if (...)

lp.FullSpan = true;
else

lp.FullSpan = false;
...

}

❖ You create a layout manager instance and set it in the RecyclerView
(there is no default, you will get an exception if you do not load one)

How to set a layout manager

var lm = new LinearLayoutManager(this, LinearLayoutManager.Vertical, false);
var rv = FindViewById<RecyclerView>(Resource.Id.recyclerView);

rv.SetLayoutManager(lm);

Load your selected

layout type

Set a layout manager

Group Exercise

❖ You get to decide how to display your data items in the UI

Motivation

E.g. you might

show one

piece of text

and an image

❖ An item-layout file defines the view hierarchy that will display one of

your data items

What is an item-layout file?

You write this XML

<LinearLayout ... >
<TextView ... />
<ImageView ... />

</LinearLayout>

❖ You write an XML layout file and include it as layout Resource in your

project

How to code an item-layout file?

Add an Id to the views you

will need to access from code

MyLayout.axml

<LinearLayout ... >
<TextView android:id="@+id/textView" ... />
<ImageView android:id="@+id/imageView" ... />

</LinearLayout>

❖ For efficiency, RecyclerView only instantiates the item-layout file for

visible items

Memory efficiency

TextView
ImageView

TextView
ImageView

TextView
ImageView

Name : Maple
Image: maple.jpg

Name : Oak
Image: oak.jpg

Name : Cherry
Image: cherry.jpg

Name : Ivy
Image: ivy.jpg

Name : Sycamore
Image: sycamore.jpg

Only 3 items fit on

screen so only 3

copies are needed

Data set is larger

than fits on screen,

no need to allocate

one layout for each

❖ For efficiency, RecyclerView reuses instantiated item-layout files as the

user scrolls

Layout recycling

TextView
ImageView

TextView
ImageView

TextView
ImageView

2. Layouts that scroll off the

top are reused to show

the new data that is now

visible at the bottom

1. User

swipes

upward

Code an item-layout file

Group Exercise

❖ You need to load your data into your UI views

Motivation [binding]

TextView
ImageView

Name : Ivy
Image: ivy.jpg

E.g. You must load

Name into the

TextView's Text
property

❖ Must get references to the views in your layout file to load data

Motivation [view lookup]

<LinearLayout ... >
<TextView android:id="@+id/textView" ... />
<ImageView android:id="@+id/imageView" ... />

</LinearLayout>

var tv = layout.FindViewById<TextView >(Resource.Id.textView);
var iv = layout.FindViewById<ImageView>(Resource.Id.imageView);

Lookup the individual views from your layout file by Id

❖ Should avoid calling FindViewById every time RecyclerView reuses

a layout

Motivation [efficiency]

TextView
ImageView

TextView
ImageView

TextView
ImageView

2. You must load

new data into

the old views

1. User

swipes

upward

❖ A view holder is an object that stores references to the views in your

item-layout file

What is a view holder?

The view-holder is given an inflated layout file and uses

FindViewById to get references to the views inside

<LinearLayout ... >
<TextView ... />
<ImageView ... />

</LinearLayout>

view holder

❖ You will have one view-holder for each instantiated layout file

View holder instances

TextView
ImageView

TextView
ImageView

TextView
ImageView

view holder

view holder

view holder

❖ Your view holder must derive from RecyclerView.ViewHolder

View holder base class

RecyclerView.ViewHolder

MyViewHolder

Defined as a

nested class inside
RecyclerView

❖ RecyclerView.ViewHolder stores a reference to the UI for the item,

you set this property using the constructor

View holder base class services

public abstract class ViewHolder : Java.Lang.Object
{ ...
public ViewHolder(View itemView) { ... }

public View ItemView { get; set; }
}

Reference to

the layout-file

instance

❖ Your view holder should provide references to each internal view, these

are typically set in its constructor

How to code a view holder

public class MyViewHolder : RecyclerView.ViewHolder
{
public MyViewHolder(View itemView)

: base(itemView)
{

Name = itemView.FindViewById<TextView >(Resource.Id.textView);
Image = itemView.FindViewById<ImageView>(Resource.Id.imageView);

}

public TextView Name { get; private set; }
public ImageView Image { get; private set; }

}

Reference to the

inflated layout file,

stored in base class

itemView is the

inflated layout file,

use FindViewById
to locate views

inside it

Code a view holder

Group Exercise

❖ An adapter is responsible for creating and populating the UI

What is an adapter?

TextView
ImageView

TextView
ImageView

TextView
ImageView

Name : Maple
Image: maple.jpg

Name : Oak
Image: oak.jpg

Name : Ivy
Image: ivy.jpg

view holder

view holder

view holder

Name : Cherry
Image: cherry.jpg

Name : Sycamore
Image: sycamore.jpg

Instantiate

layout file

Instantiate

view holder

Load data

into the UI

❖ Your adapter must derive from RecyclerView.Adapter

Adapter base class

RecyclerView.Adapter

MyAdapter

Defined as a

nested class inside
RecyclerView

❖ RecyclerView.Adapter declares the abstract members you must

code in your adapter

Adapter base class services

public abstract class Adapter : Java.Lang.Object
{ ...

public abstract int ItemCount { get; }

public abstract RecyclerView.ViewHolder OnCreateViewHolder(ViewGroup parent, int viewType);

public abstract void OnBindViewHolder(RecyclerView.ViewHolder holder, int position);
}

Load the data at the given position into the UI stored in the given view holder

Instantiate the layout file and view holderNumber of data items

❖ Your adapter needs access to your data set so it can populate the UI

and provide the item count

Data access

public class MyAdapter : RecyclerView.Adapter
{ ...
List<Tree> myData;

public MyAdapter(List<Tree> data)
{

this.myData = data;
}

}

Typical to

pass to the

constructor

public class Tree
{ ...
public string Name { get; set; }
public Drawable Image { get; set; }

}

Your data

❖ Your adapter must report the item count, used by the RecyclerView

How to code ItemCount

public class MyAdapter : RecyclerView.Adapter
{
List<Tree> myData;

public override int ItemCount
{
get { return myData.Count; }

}
...

}

Abstract member

from base class,

must override

❖ Inflation is the process of instantiating the contents of a layout file

What is Inflation?

<LinearLayout ... >
<TextView ... />
<ImageView ... />

</LinearLayout ... > Inflation creates

a view hierarchy

from a layout file

LinearLayout

TextView

ImageView

❖ Library class LayoutInflater performs inflation

What is a LayoutInflater?

Takes a layout

Id and returns a

View hierarchy

Layout

Inflater

<LinearLayout ... >
<TextView ... />
<ImageView ... />

</LinearLayout ... >

LinearLayout

TextView

ImageView

Android uses the spelling inflater rather than inflator and we will follow that convention

❖ Your adapter needs an inflater, it is typical to use the parent view passed

to OnCreateViewHolder to get one

Inflater access

public class MyAdapter : RecyclerView.Adapter
{

public override RecyclerView.ViewHolder OnCreateViewHolder(ViewGroup parent, int viewType)
{
var inflater = LayoutInflater.From(parent.Context);
...

}
...

}

Android allows you to get a LayoutInflater from a Context

The ViewGroup that will contain your inflated layout

❖ OnCreateViewHolder inflates a layout and creates a view holder

How to code OnCreateViewHolder

public class MyAdapter : RecyclerView.Adapter
{ ...

List<Tree> myData;

public override RecyclerView.ViewHolder OnCreateViewHolder(ViewGroup parent, int viewType)
{
var inflater = LayoutInflater.From(parent.Context);
var view = inflater.Inflate(Resource.Layout.MyLayout, parent, false);
return new MyViewHolder(view);

}
}

1. Inflate the item-layout file2. Create a view holder

TextView
ImageView

view holder

❖ OnBindViewHolder copies the data into the UI

How to code OnBindViewHolder

public class MyAdapter : RecyclerView.Adapter
{ ...
List<Tree> myData;

public override void OnBindViewHolder(RecyclerView.ViewHolder holder, int position)
{
var vh = (MyViewHolder)holder;

vh.Name.Text = myData[position].Name;
vh.Image.SetImageDrawable(myData[position].Image);

}
}

TextView
ImageView

Name : Ivy
Image: ivy.jpg

view holder

Destination Source

Code an adapter

Group Exercise

1. Create a RecyclerView

2. Select a layout manager

3. Code an item-layout file

4. Code a view holder

5. Code an adapter

Summary

Update the UI after a data change

1. Notify RecyclerView when your

data changes

Tasks

❖ RecyclerView does not know when your data changes

Motivation

TextView
ImageView

TextView
ImageView

TextView
ImageView

Name : Maple
Image: maple.jpg

Name : Oak
Image: oak.jpg

Name : Ivy
Image: ivy.jpg

Name : Cherry
Image: cherry.jpg

Name : Sycamore
Image: sycamore.jpg

1. You change

your data

2. UI does

not update

automatically

❖ There are two types of changes that might happen to your data

Types of changes

Name : Maple
Image: maple.jpg

Name : Oak
Image: oak.jpg

Name : Ivy
Image: ivy.jpg

Name : Cherry
Image: cherry.jpg

Name : Sycamore
Image: sycamore.jpg

Values within an item

are modified (called

an item change)

Items are added,

deleted, or moved

(called a structural

change)

❖ You use methods from your adapter's base class to notify

RecyclerView that your data has changed

Adapter methods

public abstract class Adapter : Java.Lang.Object
{ ...
public void NotifyItemChanged (int position);
public void NotifyItemRangeChanged (int positionStart, int itemCount);

public void NotifyItemInserted (int position);
public void NotifyItemRangeInserted(int positionStart, int itemCount);
public void NotifyItemRemoved (int position);
public void NotifyItemRangeRemoved (int positionStart, int itemCount);
public void NotifyItemMoved (int fromPosition, int toPosition);

public void NotifyDataSetChanged();
}

Item

changes

Structural

changes

Force a

full update

❖ The UI updates asynchronously after you call one of the notify methods

Asynchronous update

1. You change

your data and

call notify

2. UI updates

at next layout

pass (Android

says < 16ms)

TextView
ImageView

TextView
ImageView

TextView
ImageView

Name : Maple
Image: maple.jpg

Name : Ivy
Image: ivy.jpg

Name : Cherry
Image: cherry.jpg

Name : Sycamore
Image: sycamore.jpg

Flash Quiz

① Why are there so many notification methods for data changes?

a) Efficiency

b) To ensure the correct UI elements are updated

c) To encourage you to make all your data read-only

Flash Quiz

① Why are there so many notification methods for data changes?

a) Efficiency

b) To ensure the correct UI elements are updated

c) To encourage you to make all your data read-only

Flash Quiz

② When should you use the NotifyDataSetChanged() method?

a) When you have both item and structural changes

b) When you have more than five changes

c) You probably should not use it

Flash Quiz

② When should you use the NotifyDataSetChanged() method?

a) When you have both item and structural changes

b) When you have more than five changes

c) You probably should not use it

Flash Quiz

1. Notify RecyclerView when your

data changes

Summary

Respond to user actions

1. Determine the position of the

clicked item

2. Detect user actions

3. Report user actions via an event

Tasks

❖ Your app would like to be notified when the user touches an item, but

RecyclerView does not offer an item-click event

Motivation

You need to

write code to

detect a touch

❖ You have to implement item-click manually; generally, in your View

Holder and Adapter

Who implements item-click?

ViewHolder

Detects item-click

Adapter

Reports item-click

❖ Item-click events generally report the position of the clicked item

Event data

Your event handler

needs to know

which item was

touched in order

to process the event

❖ A view holder instance is a connector between a data item and its UI

View Holder as connector

TextView
ImageView

TextView
ImageView

TextView
ImageView

Name : Maple
Image: maple.jpg

Name : Oak
Image: oak.jpg

Name : Ivy
Image: ivy.jpg

Name : Cherry
Image: cherry.jpg

Name : Sycamore
Image: sycamore.jpg

view holder

view holder

view holder

❖ Your data and its UI are hosted inside different things

Adapter and Layout

TextView
ImageView

TextView
ImageView

TextView
ImageView

Name : Maple
Image: maple.jpg

Name : Oak
Image: oak.jpg

Name : Ivy
Image: ivy.jpg

Name : Cherry
Image: cherry.jpg

Name : Sycamore
Image: sycamore.jpg

view holder

view holder

view holder

UI views are

in a Layout

Your data is

inside your

Adapter

❖ Each item has two position values, one for the data and one for the UI

(the two values are the same most of the time)

Two positions

TextView
ImageView

TextView
ImageView

TextView
ImageView

Name : Maple
Image: maple.jpg

Name : Oak
Image: oak.jpg

Name : Ivy
Image: ivy.jpg

Name : Cherry
Image: cherry.jpg

Name : Sycamore
Image: sycamore.jpg

view holder

view holder

view holder

0

1

2

3

4

0

1

2

3

4

❖ ViewHolder has properties for both position values

View Holder position properties

public class RecyclerView : ...
{
public abstract class ViewHolder : Object
{ ...
public int AdapterPosition { get; }

public int LayoutPosition { get; }
}

}

Data position

UI position

❖ Android provides general guidance on the role of the two position

values

Guidance

AdapterPosition
"...when writing an

RecyclerView.Adapter,

you probably want to

use adapter positions..."

LayoutPosition
"...when writing a

RecyclerView.LayoutManager

you almost always want

to use layout positions..."

We will use AdapterPosition - the details of LayoutPosition are not covered

❖ Adapter Position is the position of an item in your data set

What is Adapter Position?

Adapter

positions
TextView
ImageView

TextView
ImageView

TextView
ImageView

Name : Maple
Image: maple.jpg

Name : Oak
Image: oak.jpg

Name : Ivy
Image: ivy.jpg

Name : Cherry
Image: cherry.jpg

Name : Sycamore
Image: sycamore.jpg

view holder

view holder

view holder

0

1

2

3

4

0

1

2

3

4

❖ AdapterPosition returns RecyclerView.NoPosition if you ask for

the position of a removed item before the next layout pass

Adapter Position availability [removed]

TextView
ImageView

TextView
ImageView

TextView
ImageView

Name : Maple
Image: maple.jpg

Name : Ivy
Image: ivy.jpg

Name : Cherry
Image: cherry.jpg

Name : Sycamore
Image: sycamore.jpg

view holder

view holder

view holder

1. You remove

a data item

and call notify

?
2. You ask for

the Adapter

Position of

the removed

item before

the next layout

pass

❖ AdapterPosition returns RecyclerView.NoPosition for all items

after you call NotifyDataSetChanged until the next layout pass

Adapter Position availability [notify]

TextView
ImageView

TextView
ImageView

TextView
ImageView

Name : Maple
Image: maple.jpg

Name : Ivy
Image: ivy.jpg

Name : Cherry
Image: cherry.jpg

Name : Sycamore
Image: sycamore.jpg

view holder

view holder

view holder

1. You change

your data and

call the method
NotifyDataSetChanged

2. All requests

for Adapter

Position return
NoPosition

?

?

?

❖ Apps typically use AdapterPosition for item-click; it works well when

you need to respond based on the data (e.g. master-details view)

When to use AdapterPosition

public class MyViewHolder : RecyclerView.ViewHolder
{ ...
void OnClick(object sender, EventArgs e)
{
int position = base.AdapterPosition;

if (position == RecyclerView.NoPosition)
return;

...
}

}

Typical to discard

events that yield
NoPosition

Get the position

❖ Your view holder is the natural place to detect user actions

View holder [responsibility]

It knows the item's

position in your dataset

It has references to the

entire layout and the

views inside the layout

<LinearLayout ... >
<TextView ... />
<ImageView ... />

</LinearLayout>
Name : Oak
Image: oak.jpg

❖ View holder should detect user clicks and report them to its adapter

View holder [implementation]

public class MyViewHolder : RecyclerView.ViewHolder
{
public MyViewHolder(View itemView, Action<int> listener)
: base(itemView)

{
itemView.Click += (s, e) => listener(base.AdapterPosition);
...

}
}

This example listens for clicks on the

entire item layout, could also subscribe

on the views inside if needed

Notify the adapter via a callback,

pass the position of the clicked item

(error checking for NoPosition omitted here)

❖ Your adapter raises its event to notify client code

Adapter [implementation]

public class MyAdapter : RecyclerView.Adapter
{ ...

public event EventHandler<int> ItemClick;

public override RecyclerView.ViewHolder OnCreateViewHolder(ViewGroup parent, int viewType)
{ ...

return new MyViewHolder(view, OnClick);
}

void OnClick(int position)
{
if (ItemClick != null)
ItemClick(this, position);

}
}

1. Register a callback with the view holder2. Raise the event

Add an item-click event

Individual Exercise

1. Determine the position of the

clicked item

2. Detect user actions

3. Report user actions via an event

Summary

Show data in a CardView

1. Decide whether to use CardView

2. Add the CardView support library

3. Use CardView in your item-layout file

Tasks

❖ CardView is a container for displaying related data, typically used to

display an item from a collection

What is CardView?

Looks like a

piece of paper

2dp corner radius

Often have actions inside

Often are dismissible

Shadow

❖ Android has guidelines for the content within a card and how to arrange

card collections

CardView layout guidelines

8dp from edge

of screen

16dp content

padding

24sp min for headline text,

14sp or 16sp for body text

8dp between cards

❖ Use CardView for data that is variable type or variable size

When to use CardView

Different

types

Different heights

(but same type)

❖ CardView is also in a support library available from the Xamarin

Component Store or Nuget

CardView packaging

<android.support.v7.widget.CardView>
...

</android.support.v7.widget.CardView>

2. Qualify the name1. Add the Xamarin Component

or the NuGet package

CardView runs on older API levels but requires the app to be built with SDK level 21.

Otherwise if will fail while inflating the layout

❖ CardView offers several custom attributes that influence how it looks

CardView attributes

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.CardView
xmlns:custom="http://schemas.android.com/apk/res-auto"
...
custom:cardElevation="5dp">
...

</android.support.v7.widget.CardView>

Declare

namespace

Set value

❖ CardView lets you control elevation (i.e. shadow size) to make the card

appear to float, larger values make it look higher

CardView elevation

cardElevation

Content area
cardMaxElevation
(max allowed value,

useful when setting

elevation dynamically)

❖ CardView offers 5 padding properties to inset content within the card;

they can be set via XML (see below) or via analogous methods in code

CardView padding

contentPaddingLeft contentPaddingRight

contentPaddingTop

contentPaddingBottom

Content area

contentPadding
(same on all sides)

❖ CardView lets you control the corner radius, the recommended value is

2dp (0dp is discouraged since it will look like a tile instead of a card)

CardView corner radius

Content area

cornerRadius

❖ CardView lets you control the background color

CardView background

Content area
cardBackgroundColor
(e.g. the color shown

here is #2A84D3)

❖ CardView is a FrameLayout that displays a single piece of your

content

How to use CardView

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.CardView ... >

<LinearLayout ... >
...

</LinearLayout ... >

</android.support.v7.widget.CardView>

Typical to nest

a layout inside

a card

Show data in a CardView

Group Exercise

1. Decide whether to use CardView

2. Add the CardView support library

3. Use CardView in your item-layout file

Summary

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

