
Download class materials from

university.xamarin.com

Introduction to

Xamarin.Android

AND101

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2018 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Create a Xamarin.Android project

2. Decompose an app into Activities

3. Build an Activity's UI

4. Write an Activity's behavior

5. Update your Android SDK

Objectives

Preview the finished lab exercise

Demonstration

Create a Xamarin.Android project

1. Choose a Xamarin.Android

template to create a new app

2. Create a new project in your IDE

Tasks

❖ Xamarin.Android apps are apps built with Xamarin's tools and libraries

What is a Xamarin.Android app?

UI is made from

Xamarin's wrappers

around the native

Android views

Code is written in C#

F# is also supported; however, this course will use C#.

❖ Xamarin.Android apps are coded in C# and built with either

Visual Studio or Visual Studio for Mac

Development environment

var employees = new List<Employee>();
var seniors = from e in employees where e.Salary > 50000 select e;

var client = new HttpClient();
var result = await client.GetStringAsync("");

Supports latest C# features like generics, async/await, LINQ, lambda expressions, etc.

❖ The Xamarin.Android bindings to Android libraries provide a familiar

programming experience for C# developers

C# idioms

EditText input = new EditText(this);

String text = input.getText().toString();

input.addTextChangedListener(new TextWatcher() { ... });

var input = new EditText(this);

string text = input.Text;

input.TextChanged += (sender, e) => { ... };

Java uses get/set methods, listeners, etc. Xamarin.Android uses properties and

events

When a new version of Android is released, the Xamarin wrappers are ready within days.

❖ Xamarin.Android apps can use utility classes from three libraries

Libraries

android.* Mono.NETjava.*

Xamarin provides

C# wrappers for all

Android Java libraries

Xamarin provides

C# wrappers for

all Android APIs

Includes most .NET

types but not the

entire Mono library

A Bindings Library is built on JNI and take some work to set up but is easier to use.

❖ You can use JNI or a Bindings Library to incorporate third-party Java

libraries into your Xamarin.Android app

Third-party Java

PayPal TritonPlayerArcGIS ...

Mapping Finance Music

❖ Xamarin.Android includes several Android project templates

Xamarin.Android project templates

Visual Studio for Mac shown,

Visual Studio has

analogous templates

Create a Xamarin.Android project

Group Exercise

Decompose an app into Activities

1. Define the concept of an Activity

2. Decompose an app into Activities

Tasks

❖ An Android app is a collection of collaborating parts, the most common

being Activities

App structure

Activity 1

UI

Code

Activity 2

UI

Code

Activity 3

UI

Code

Data files,

images, etc.

MyApp

❖ An Activity defines the UI and behavior for a single task

What is an Activity?

void OnClick(object sender, EventArgs e)
{
int digits = int.Parse(input.Text);

string result = CalculatePi(digits);

output.Text = result;
}

The "Pi" Activity has UI and coded behavior

❖ The Email app has several activities

Activity example: Email

Messages Activity Compose Activity Settings Activity

Flash Quiz

① Name some possible Activities from a music-player app

Flash Quiz

① Name some possible Activities from a music-player app

a) Playlists

b) Artists

c) Radio

d) Store

e) Currently Playing

Flash Quiz

② Name some possible Activities from a contacts app

Flash Quiz

② Name some possible Activities from a contacts app

a) All contacts

b) Add new

c) Details

d) Edit

Flash Quiz

③ Which answer best describes the scale of an Activity?

a) The same amount of code as a control such as a button or text box.

b) One entire screen. When you navigate to a new screen you would

likely be moving to a new Activity.

c) Several screens. When you navigate between the screens you would

stay in the same Activity.

Flash Quiz

③ Which answer best describes the scale of an Activity?

a) The same amount of code as a control such as a button or text box.

b) One entire screen. When you navigate to a new screen you would

likely be moving to a new Activity.

c) Several screens. When you navigate between the screens you would

stay in the same Activity.

Flash Quiz

1. Define the concept of an Activity

2. Decompose an app into Activities

Summary

Build an Activity's UI

1. Add Views to a Layout in XML

2. Use the Designer tool

Tasks

❖ An Android UI is composed of Views and ViewGroups

UI elements

Object

View

ViewGroup

Collection views

like lists and grids

Controls like button,

text box, etc.

Layout panels that size

and position their children

Views are also called widgets. Many are defined in the Android.Widget namespace.

❖ A View is a user-interface component with on-screen visuals and

(typically) behavior such as events

What is a View?

TextView for text display

Button

EditText for text entry

We will use only LinearLayout in this course.

❖ A layout is a container that manages a collection of child views and

calculates their size/position on screen

What is a layout?

LinearLayout
Single row or

column

RelativeLayout
You specify how

each is positioned

relative to neighbors

GridLayout
Rows and

columns

❖ UI Views are typically created in an XML layout file (.axml)

What is a layout file

<LinearLayout ... >
<TextView ... />
<EditText ... />
<Button ... />
<TextView ... />

</LinearLayout ... >

Pi.axml

Child views are

nested inside a

layout panel

❖ Resources are non-code files packaged with your app

What are Resources?

Placed in the app's

Resources folder

Note: Visual Studio for Mac shown, Visual Studio on Windows is similar

❖ Layout files are a Resource and must be placed in the layout folder

Where to define your layout files

Note: Visual Studio for Mac shown, Visual Studio on Windows is similar

Images
Layout files

Strings, colors, etc.

Icons in many sizes

for screens of different

pixel densities

❖ Xamarin provides a UI design tool for creating and editing layout XML

UI Designer

Toolbox to add

new Views

with drag-drop

Property editor

Available for both

Visual Studio

platforms

Attributes names do not always match the underlying property names. See the Android

documentation on each class (e.g. TextView) for a table of the XML attribute names.

❖ XML attributes are used to set properties on the underlying objects

View attributes

LinearLayout has an orientation
that sets its Orientation property

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:orientation="vertical">
<TextView android:text="Enter number of digits:" ... />
...

</LinearLayout>

TextView, EditText, and Button have

a text attribute that sets their Text property

Android does not require the prefix on Elements so it is common practice to omit it.

❖ View attributes must be prefixed with the Android namespace when

defined in XML

Android namespace

Prefix with namespace

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android" android:orientation="vertical">
<TextView android:text="Enter number of digits:" ... />
...

</LinearLayout>

Prefix with namespace

❖ LinearLayout requires layout_width and layout_height on

every view

View sizing [required]

Failure to set width and height yields a runtime exception

match_parent is the replacement for the equivalent-but-deprecated fill_parent

❖ There are two special values you can use to specify width and height

View sizing [automatic]

same size as

the parent view

<LinearLayout ... >
...
<TextView android:layout_width="match_parent" android:layout_height="wrap_content" ... />
...

</LinearLayout>

just large enough to

fit around its content

Add views to a layout file manually and with the Designer tool

Group Exercise

❖ You can use px (screen pixel) for sizing but they are not recommended

since they do not adapt to different displays

Pixel sizing

Always occupies 100 physical pixels,

it will be small on a high-density screen

and large on a low-density screen

<Button android:layout_width="100px" ... />

❖ A density-independent pixel (dp) is an abstract unit of measure that maps

to physical pixels at runtime based on screen density

What is a density-independent pixel?

The goal is for this to occupy about the same area on-screen

regardless of the device's screen density. On a high-resolution

screen, this would occupy more than 100 physical pixels.

<Button android:layout_width="100dp" ... />

The baseline density is derived from the screen of the G1, the first Android device.

❖ Android chose a baseline density of 160dpi, so 1dp=1px on a 160dpi

screen

Baseline density

On a 160dpi screen, this would occupy 100 physical pixels

<Button android:layout_width="100dp" ... />

Flash Quiz

① How many physical pixels (px) would the Button shown below occupy

on a 480dpi screen?

Flash Quiz

<Button android:layout_width="100dp" ... />

The conversion formula is: 𝑝𝑥 = 𝑑𝑝 ∗
𝑑𝑝𝑖

160

① How many physical pixels (px) would the Button shown below occupy

on a 480dpi screen?

a) 300

Flash Quiz

300𝑝𝑥 = 100𝑑𝑝 ∗
480𝑑𝑝𝑖

160

1. Add Views to a Layout in XML

2. Use the Designer tool

Summary

Write an Activity's behavior

1. Designate a Main Activity

2. Load an Activity's UI

3. Access Views from code

Tasks

❖ An Activity has an XML layout file and a C# source file to drive the logic

How to define an Activity

<LinearLayout ... >
<TextView ... >
<EditText ... >
<Button ... >
<TextView ... >

</LinearLayout>

Pi.axml

[Activity]
public class PiActivity : Activity
{
...
...

}

PiActivity.cs

UI layout file C# class must inherit from Activity and be

decorated with the [Activity] attribute

❖ An app uses the [Activity] attribute to designate an Activity as an

entry point

Main Activity

[Activity(MainLauncher = true)]
public class PiActivity : Activity
{
...

}

Only one

activity can

be marked

as the main

entry point

❖ An app's manifest describes the app to the Android OS

What is the App Manifest?

Every app must

have a manifest and

it must be named

AndroidManifest.xml

Identity info

Needed services

❖ The Manifest tells Android which is your app's main Activity

Main Activity and the Manifest

The MainLauncher property in the [Activity] attribute creates these values in the Manifest.

Android uses these to determine the app entry point and to list this activity on the launcher screen.

<manifest...>
<application...>
<activity...>
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />

</intent-filter>
</activity>

</application>
</manifest>

❖ Override Activity.OnCreate to do your initialization

Activity initialization

Must call base or

get an exception

[Activity(MainLauncher = true)]
public class PiActivity : Activity
{
protected override void OnCreate(Bundle bundle)
{
base.OnCreate(bundle);
...

}
...

}

❖ The build process auto-generates a Resource.Layout class that

contains an identifier for each of your layout files

How to identify a layout file

public partial class Resource
{
public partial class Layout
{
public const int Pi = 2130903040;
...

}
...

}

Use Resource.Layout.Pi
to refer to this layout in code

The generated field matches the filename

Resource.designer.cs

❖ The Activity.SetContentView method instantiates all the Views in a

layout file and loads them as the Activity's UI

UI Creation

[Activity(MainLauncher = true)]
public class PiActivity : Activity
{

protected override void OnCreate(Bundle bundle)
{

base.OnCreate(bundle);

SetContentView(Resource.Layout.Pi);
}
...

}

Call from
OnCreate

Pass the resource identifier of the layout file

❖ The View class defines an Id property that is used to uniquely identify

an instance of a View

What is an Id?

namespace Android.Views
{
public class View
{
public virtual int Id { get; set; }
...

}
}

Notice that the type is int, not string

❖ Set the Id of a View in XML using the id attribute and the syntax @+id/

How to set an Id

Build tool generates

a integer field and

loads the integer

into the View's Id

<EditText android:id="@+id/digitsInput" ... />Set an id in the XML

public partial class Resource
{
public partial class Id
{
public const int digitsInput = 2131034113;
...

}
...

} Resource.designer.cs

❖ Use Activity.FindViewById to lookup a View in an Activity's UI

How to access views from code

[Activity(MainLauncher = true)]
public class PiActivity : Activity
{

protected override void OnCreate(Bundle bundle)
{

base.OnCreate(bundle);
SetContentView(Resource.Layout.Pi);

var et = FindViewById<EditText>(Resource.Id.digitsInput);
...

}
...

}

Implement an Activity's behavior and run your app in an emulator

Individual Exercise

Update your Android SDK

1. Understand the Xamarin.Android

development process

2. Update your Android Tools

3. Update your Android Platform SDK

Tasks

❖ Xamarin.Android uses native Android tools and libraries

Motivation

You need to install updates to

target new Android versions

Android

SDK

Android

NDK

JDK

(Java SDK)

Mono

.NET

Xamarin Android

❖ The Java SDK (JDK) is the collection of libraries and tools needed to

build and run Java applications

What is the JDK?

Dev tools
(compiler,

jarsigner, etc.)

Runtime
(virtual

machine and

libraries)

java.*
library

packages

Docs and

Samples

These tools are used in

the Android build process

Library

source

code

❖ The Android SDK contains the APIs and tools needed to create and run

a native Android app

What is the Android SDK?

Core libraries:

the java.* and

android.* types

Google

APIs
(e.g. calendar,

gmail access)

Tools
SDK

Platform

SDK

Docs and

Samples

Emulator

images

Build tools (e.g. bytecode

compiler) and runtime

support (e.g. debug tools)

Optional

libraries

Writing part of your app in C/C++ is rare. It will increase complexity but may not

increase performance. It can be useful in games or to reuse an existing C/C++ codebase.

❖ The Android NDK is a collection of code and tools that let you write part

of your native Android app in a language like C and C++

What is the Android NDK?

Compilers

and linkers
(e.g. create

native ARM

binaries)

Tools
(e.g. add

native binaries

to an .apk)

C

Headers

NDK

Docs and

Samples

❖ Mono is an open-source implementation of the .NET Framework; several

parts are used in Xamarin.Android development

What is Mono?

Mono

Class

Library

Mono

Runtime

Base Class

Library

C#

Compiler

Many of these

are available in

Xamarin.Android

Used to

execute

your IL

Used to

compile

your C#

Not

used

❖ Java source is compiled into Dalvik bytecode for deployment (bytecode

are analogous to .NET Intermediate Language)

Native compilation

.dex filesJava

compiler

Android dex

compiler

Java bytecode Dalvik bytecode

For upload to the Play store, there are two more steps that are not shown: signing with

jarsigner and optimizing the layout of the file with zipalign.

❖ An app's bytecode, images, data files, etc. are combined into an

Application Package (.apk file) for deployment

Native packaging

.dex files

Resources

(e.g. images)

.apk fileAndroid

apkbuilder

The .apk file contains

all the app's assets

and is ready to run

Android versions before 5.0 used the Dalvik VM which translated bytecode at runtime.

❖ The Android Runtime (ART) is the execution engine for Android apps

Native execution

bytecode are compiled to

native code at installation

(called Ahead-of-Time or AOT)

MyApp.apk
Android

Runtime

(ART)

Apps run in their own process

with their own copy of the

ART Virtual Machine

❖ C# code in Xamarin.Android apps is compiled to .NET Intermediate

Language (IL)

Xamarin.Android compilation

assemblyC# compiler

IL and metadata

Project settings and code Attributes let you control which assemblies are linked.

Dynamic code should not use the linker (e.g. members accessed via reflection).

❖ The Xamarin.Android linker removes unused IL to reduce the size of

your app for deployment

Xamarin.Android linking

Linker

Mono assemblies

your assemblies

Mono assemblies
(filtered)

Determines which class members are used in your

app and includes only those members in the output

your assemblies
(filtered)

Mono

Runtime

❖ Xamarin.Android apps have the Mono Runtime packaged in their .apk

file because it is needed to execute IL

Xamarin.Android and the Mono VM

The Xamarin build tools

add the Mono VM to

your application package

.apk fileAndroid

apkbuilder

❖ Mono and ART VMs run side-by-side to execute a Xamarin.Android app

Xamarin.Android execution

Android

Runtime (ART)

Mono

Runtime

Linux Kernel

android.*

libraries

java.*

libraries

.NET

libraries

your

C# code

Flash Quiz

① As a Xamarin.Android developer, why do you need to know how native

Android development works?

a) You do not need to know, that is the point of Xamarin

b) Xamarin tools use native tools, you need the native tools installed

c) So you can run your app on other platforms

Flash Quiz

① As a Xamarin.Android developer, why do you need to know how native

Android development works?

a) You do not need to know, that is the point of Xamarin

b) Xamarin tools use native tools, you need the native tools installed

c) So you can run your app on other platforms

Flash Quiz

② Which items do you need to have installed to develop Xamarin.Android

apps?

a) JDK (Java SDK)

b) Android SDK

c) Mono.NET

d) All of the above

Flash Quiz

② Which items do you need to have installed to develop Xamarin.Android

apps?

a) JDK (Java SDK)

b) Android SDK

c) Mono.NET

d) All of the above

Flash Quiz

③ Xamarin.Android compiles your C# to Java bytecode in order to

execute it on the Android Runtime (ART)?

a) True

b) False

Flash Quiz

③ Xamarin.Android compiles your C# to Java bytecode in order to

execute it on the Android Runtime (ART)?

a) True

b) False

Flash Quiz

❖ The Xamarin unified installer (http://xamarin.com/download) loads

nearly everything you need to develop and run Xamarin.Android apps

Xamarin.Android installation

Android

SDK

Android

NDK

JDK

(Java SDK)

Visual

Studio

+ Xamarin

Xamarin

Android

Android requirements Xamarin requirements

(including Mono items)

❖ You need to manually update your Android SDK Platform and Tools so

you can build against the latest versions of Android

Android SDK updates

Google

APIs
(e.g. calendar,

gmail access)

Tools
SDK

Platform

SDK

Docs and

Samples

Emulator

images

Android SDK

Supplies the java.* and

android.* library types

that you code against

Supplies the build tools

and runtime support tools

need for dev and execution

❖ Android versions are identified via a code name and two numbers

Android versions

Code Name Version API Level

Nougat 7.0 24

Marshmallow 6.0 23

Lollipop 5.1 22

Lollipop 5.0 21

Kit Kat (watch) 4.4W 20

Kit Kat 4.4 19

Jelly Bean 4.3 18

...

Level identifies the

combination of libraries,

manifest elements,

permissions, etc. that you

code against as a developer

❖ Apps can determine the version of Android running the app

Determining version at runtime

var version = Android.OS.Build.VERSION.SdkInt;

if (version >= Android.OS.BuildVersionCodes.Honeycomb)
{
var va = Android.Animation.ValueAnimator.OfInt(1, 100);
...

}

ValueAnimator is available in

API 11 and higher so you should

test for availability before use

❖ The Android SDK Manager is a tool from Google that lets you install new

(and old) versions of the Android SDK

What is Android SDK Manager?

The SDK Manager lets you install all of these components

Google

APIs
(e.g. calendar,

gmail access)

Tools
SDK

Platform

SDK

Docs and

Samples

Emulator

images

❖ Visual Studio menu entries launch the Android SDK Manager

How to launch Android SDK Manager

Visual Studio for Mac Tools menu Visual Studio Tools > Android menu

❖ Android splits the SDK tools into three parts that can be updated

separately; you should keep all three categories up-to-date

Updating tools

Update all of these.

The SDK manager

tells you when

updates are ready.

❖ Use the SDK Manager to install the platform versions you would like to

compile against

Updating platform versions

Install the SDK

Platform for the

versions you need

Update Tools and SDK Platform

Group Exercise

❖ This class has shown you how to

build a Xamarin.Android app with

one Activity

❖ In AND102 we will look at how to

create multiple Activities and get

them to work together by passing

arguments and retrieving results

Next Steps

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

