
Download class materials from

university.xamarin.com

Xamarin.UITest

XTC102

Information in this document is subject to change without notice. The example companies,

organizations, products, people, and events depicted herein are fictitious. No association with

any real company, organization, product, person or event is intended or should be inferred.

Complying with all applicable copyright laws is the responsibility of the user.

Microsoft or Xamarin may have patents, patent applications, trademarked, copyrights, or other

intellectual property rights covering subject matter in this document. Except as expressly

provided in any license agreement from Microsoft or Xamarin, the furnishing of this document

does not give you any license to these patents, trademarks, or other intellectual property.

© 2014-2018 Xamarin Inc., Microsoft. All rights reserved.

Xamarin, MonoTouch, MonoDroid, Xamarin.iOS, Xamarin.Android, Xamarin Studio, and Visual

Studio are either registered trademarks or trademarks of Microsoft in the U.S.A. and/or other

countries.

Other product and company names herein may be the trademarks of their respective owners.

1. Create a Xamarin.UITest project

2. Create a cross-platform UI Test

3. Run UI Tests on physical devices

Objectives

Create a Xamarin.UITest project

1. Create a new UITest project

2. Use the REPL tool

3. Create a query

4. Build acceptance tests

Tasks

❖ Xamarin.UITest is a framework which lets you

automate a mobile device and application

What is Xamarin.UITest?

app.Tap (c => c.Marked ("Add"));
app.EnterText(c => c.Class("UITextField")

.Index(0), "Get Milk");
app.Tap (c => c.Marked ("Save"));

❖ Visual Studio for Mac has

project templates for

creating UITest projects

for cross-platform, iOS

and Android apps

❖ Creates a working project

to start with, you just fill

in some details and write

the tests

Creating a Xamarin.UITest project

Note: Xamarin.UITests for iOS applications can only be executed on a Mac currently;

Android tests can be run on either Windows or Mac

❖ Visual Studio has several UI test projects across multiple categories, use

the Search box to show them all at once

Creating a Xamarin.UITest project

❖ Xamarin.UITest is a framework of commands you can use to automate

an application in a cross platform fashion; the actual testing part is done

through a unit testing framework

Running UI Tests

MSTest

Can use any test harness to execute the testing logic

❖ Xamarin.UITest utilizes a client/server architecture to automate your

application and run the UI tests using HTTP and JSON

Xamarin.UITest Architecture

NUnit

UI Tests

UI Test

Xamarin Test

Cloud Agent

Client

Runs on the same computer

as the unit tests

(e.g. desktop or cloud)

JSON

Tap (coord)
Swipe Up
Type "ABC" Test Cloud

Agent

HTTP Server

Runs on the device or simulator

Automation

APIs

Your

App

❖ On Android, Xamarin.UITest installs

the Xamarin Test Cloud Agent

server as a separate process

❖ Process is signed with the same

keystore as your application so it

can drive it with the Android

Automation APIs

Android architecture

App being

tested

Test Cloud

Agent

Server

NUnit

UI Tests

UI Tests

Xamarin

Test Cloud

Agent Client

❖ On iOS, the Xamarin Test Cloud

Agent component must be installed

as part of the application bundle

❖ Since it's part of your app's process,

it can utilize the iOS Automation

APIs to automate the application

iOS architecture

App being

tested

Test Cloud

Agent

Server

NUnit

UI Tests

UI Tests

Xamarin

Test Cloud

Agent Client

❖ Must include the Test Cloud

server as part of your iOS

app that is being tested

❖ Can be installed through

Nuget (preferred) or the

Xamarin Component Store

Automating an iOS application

This must be included in

the Xamarin.iOS application

❖ Native iOS applications written in Objective-C or Swift can download

Calabash from Github and install it through a script

Automating an iOS application

This must be included

in an XCode-based

application

❖ Add code to start the Calabash server in your Xamarin.iOS application

into the FinishedLaunching method

Starting the Automation Server

public override bool FinishedLaunching (...) {
...
#if ENABLE_TEST_CLOUD
Xamarin.Calabash.Start();
#endif

}

Setup is different for native Objective-C or Swift apps – check the calabash-ios

Github readme for information on incorporating the server into your app

❖ Template will create a test class with a [SetUp] step to initialize UITest;

the contents vary based on the project style (Mobile vs. iOS vs. Android)

UITest project structure

public class AppInitializer
{

public static IApp StartApp(Platform platform)
{

if (platform == Platform.Android) {
// ... Android init ...

}
// ... iOS init ...

}

Creating a UITest Project

Group Exercise

❖ Testing API is provided through IApp interface

which defines the methods used to interact with

the app's UI

❖ Two implementations available today

▪ iOSApp

▪ AndroidApp

❖ Implementations obtained through static builder

class ConfigureApp

Interacting with UITest

❖ ConfigureApp is used to initialize and configure UITest; this should be

done prior to each test to keep the tests independent

Configuring UITest

IApp app; // Field used by each [Test] method

[SetUp]
public void BeforeEachTest() {

...
}

First step is to identify the

platform, can be either iOS

or Android
app = ConfigureApp.Android

app = ConfigureApp.iOS or

❖ UITest runs tests against a specific, running application; can identify that

application in several ways:

Selecting the application to test

Bundle

(.app), IPA

or APK

Can specify the full path on

the local disk to a built iOS

or Android application

❖ Use the AppBundle or ApkFile method to identify a binary to test – this

is installed on the simulator/emulator/device and then tests are executed

Selecting an app bundle or package

app = ConfigureApp.iOS
.AppBundle("../../path/mybundle.app");

app = ConfigureApp.Android
.ApkFile("../../path/myapp.apk");

Must supply the full path leading up to the binary; can use relative paths for projects in

the same solution - starting at the UITest binary output folder

❖ UITest runs tests against a specific, running application; can identify that

application in several ways:

Working with UITest

Bundle

(.app), IPA

or APK

Installed

App name

Can identify a specific

package or bundle identifier

for an installed application

❖ Use the InstalledApp method to identify an application that is already

installed on the simulator/emulator/device

Select an installed application

app = ConfigureApp.iOS // or Android
.InstalledApp("com.xamarin.taskypro");

pass the package name or bundle identifier to specify the application

❖ UITest runs tests against a specific, running application; can identify that

application in several ways:

Working with UITest

Bundle

(.app), IPA

or APK

Installed

App name

Project in

solutionCan associate another project

in the solution to test – app

project must be in the same

folder as the UITest project

❖ Unit Tests pad has UI to associate another project in the solution with

your tests – use the Test Apps section

Selecting a project in your solution

This approach requires no code to launch the application – it's like specifying the

app bundle or package, but the path is determined automatically

❖ Unit Tests pad has UI to associate another project in the solution with

your tests – use the Test Apps section

Selecting a project in your solution

This approach requires no code to launch the application – it's like specifying the

app bundle or package, but the path is determined automatically

❖ Last step in the configuration is the start the application, this will launch

the application on the simulator/emulator/device

Starting your app

IApp app;

[SetUp]
public void BeforeEachTest()
{

app = ConfigureApp.Android
.ApkFile("../../path/myapp.apk")
.StartApp();

}

❖ UITest uses NUnit to execute the tests, but these are not unit tests

Writing tests

[TestFixture]
public class TaskyProBasicTests
{

[Test]
public void AddMilk_ShouldShowMilkInTasks()
{

...
}

}

❖ Use the IApp interface to interact directly with your application UI:

locating elements, tapping, typing, gestures and more

Writing tests

[Test]
public void AddMilk_ShouldShowMilkInTasks()
{

app.Tap (c => c.Marked ("Add"));
app.EnterText(c => c.Class("UITextField")

.Index(0),"Get Milk");
app.Tap (c => c.Marked ("Save"));

}

❖ Can run tests either in the IDE or

from the command line (they are

just unit tests)

▪ nunit-console.exe

❖ iOS UI Tests can only be run from

Visual Studio on the Mac, but

Android is supported on both

platforms and IDEs

Running the test

❖ Built in REPL (Read-

Evaluate-Print-Loop)

allows you to explore

and manipulate the

running application

interactively through

a runtime shell

Using the REPL

app.Repl();

❖ Use Tree to dump the

visual tree for your app

Examining the UI with the REPL

❖ Can use the copy command in the REPL to copy your command history

to the clipboard, then use this text as the basis for a UI test

Copying the REPL data into a test

Working with the REPL

Demonstration

❖ Xamarin.UITest has a rich API that allows for complete interrogation and

interaction with the application

API Commands

Commonly used methods

Query Tap WaitFor

WaitForElement WaitForNoElement Screenshot

SwipeLeft SwipeRight ScrollUp

ScrollDown Flash

❖ Most APIs are executed on a single UI element; can

identify visible elements through a query

Identifying UI elements

AppResult[] matchedItems =
app.Query(

c => c.Button().Marked("Save"));

Returns an array of zero or more UI

elements that match the provided filter

Query identifies one or more visible elements on your

current screen – typically through text or an id

❖ Two ways to identify elements in your UI, can use them independently

or together to be very specific with your query

Identifying UI elements

Class Queries

Identify UI elements

based on the specific

control ("class") type

Marked Selectors

Identify UI elements using

unique identifiers or

associated text property

❖ Class queries are used to identify UI elements based on type

Class Queries

var matches = app.Query(c => c.Class("UILabel"));

var matches = app.Query(c => c.Class("TextView"));

var matches = app.Query(c => c.Button());

var matches = app.Query(c => c.TextField());

helper methods provide abstraction over common platform types

❖ Marked selectors identify elements based on text or id, often used

together with class queries to uniquely identify an element

Marked Selectors

var matches =
app.Query(c => c.Button().Marked("Save"));

① Get all buttons (UIButton or Android Button) in the UI

② Return any button with the text "Save"

Should prefer to identify visual elements using unique id instead of text values – text

tends to change over time (or for localization), ids will remain constant

❖ Marked selectors identify elements based on text or id, often used

together with class queries to uniquely identify an element

Marked Selectors

var matches =
app.Query(c => c.Button("Save")); Shorthand syntax

allows all queries to

take a string – this turns

into a Marked selector

var matches =
app.Query(c => c.Button().Marked("Save"));

or

❖ Queries are used in Xamarin.UITest to locate and interact with the

application's user interface

Commonly used queries

Query What does the query do?

app.Query(); Selects all visible elements

app.Tap (c => c.Id ("MyButton")); Selects all visible controls with the

identifier "MyButton"

app.Tap ("Click me"); Selects all visible elements with the text

or id "Click me"

app.Flash (c => c.Button ()); Flash all the visible buttons

Commonly used queries

Query What does the query do?

app.Query (c => c.Class("UILabel")); Selects all visible UILabels

app.Query (c => c.All()); Selects all controls, visible and

invisible

app.Query (c =>
c.Id ("MyWeb").Css("input"));

Selects the items that match the CSS

selector "input" on the Web View

called "MyWeb"

Writing Acceptance Tests

Perform UI queries against the application through IApp

app.Tap (c => c.Marked ("Add"));

Verify the user interface reflects what you should see

Assert.IsTrue(app.Query (c => c.Marked ("entry_field")).Length > 0,

"No text value was added to the entry field on Add");

Launch the Application

IApp app = ConfigureApp.iOS.AppBundle ("PathToIPA.app").StartApp ();

Arrange

Act

Assert

Flash Quiz

① The REPL Tool can perform what operations (choose all that apply)

a) Query the User Interface

b) List the contents of the View Hierarchy

c) Copy previous operations to the clipboard

d) All of the above

Flash Quiz

① The REPL Tool can perform what operations (choose all that apply)

a) Query the User Interface

b) List the contents of the View Hierarchy

c) Copy previous operations to the clipboard

d) All of the above

Flash Quiz

② The command to type in a control is

a) TypeText

b) EnterText

c) UseKeyboard

Flash Quiz

② The command to type in a control is

a) TypeText

b) EnterText

c) UseKeyboard

Flash Quiz

③ The Query operation by itself will show all controls, both visible and

invisible on the device

a) True

b) False

Flash Quiz

③ The Query operation by itself will show all controls, both visible and

invisible on the device

a) True

b) False

Flash Quiz

Creating acceptance tests with Xamarin.UITest

Individual Exercise

Create a cross-platform UI Test

1. Cross-platform tests

2. Platform differences

3. Advanced operations

Tasks

❖ UI is often constructed uniquely on

each platform

❖ Unique tests are appropriate for many

cases

❖ Ideally could run the same logical tests

on all the platforms but have each test

compensate for the unique UI

presented

Creating cross-platform tests

❖ Process of identifying the UI to test changes as you move from iOS to

Android, this means two areas will be affected in your test code

Cross-platform testing

Class Queries Marked Selectors

❖ Available controls are different on each platform, so our class queries

will often need to change to properly identify the UI to test

Class queries

app.Query (c => c.Class("android.widget.TextView"));

app.Query (c => c.Class("UILabel"));

vs.

❖ Warning: Marked selector works differently between platforms

Marked selector

On iOS, it matches against the AccessibilityIdentifier and

AccessibilityLabel of the UIView

On Android, the marked selector matches against the Id,

ContentDescription, and Text of each view

❖ Xamarin.Forms renders UI for you based on the logical tree of controls

you create in code or XAML

Adding support for Xamarin.Forms

Button button = new Button {
Text = "Click Me!"

}; iOS

android.widget.Button

UIButton

System.Windows.Button

❖ Can add AutomationId to each control to enable cross-platform

lookup using Marked selector

Adding support for Xamarin.Forms

var b = new Button {
Text = "Click me",
AutomationId = "MyButton"

};
var l = new Label {

Text = "Hello, Xamarin.Forms!",
AutomationId = "MyLabel"

};

<Button Text="Click Me"
AutomationId="MyButton" />

<Label Text="Hello, Xamarin.Forms!"
AutomationId = "MyLabel" />

Only iOS and Android are supported

Show the platform differences

Demonstration

❖ Can use isolation and abstraction

techniques such as interfaces, partial

classes and conditional code to define

the unique non-sharable elements

❖ Variety of ways to structure this – can

be as complex or as simple as you

need it to be (and are willing to

maintain)

Abstracting our tests

❖ Platform enumeration passed to constructor of test – can be used to

create platform-specific setup code

Detecting the platform

[TestFixture (Platform.Android), [TestFixture (Platform.iOS)]
public class Tests
{

IApp app;
Platform platform;

public Tests(Platform platform) {
this.platform = platform;
if (platform == Platform.iOS) { ... }
else if (platform == Platform.Android) { ... }

}
}

❖ Create unique

platform-specific

queries to identify the

UI element the tests

need to access

❖ … then use these

captured queries in

your tests

Creating cross-platform tests #1

readonly Func<AppQuery,AppQuery> AddButton;
readonly Func<AppQuery,AppQuery> NameField;

app.Tap(AddButton);
app.EnterText(NameField, name);

if (platform == Platform.iOS) {
AddButton = c => c.Button("Add");
...

} else {
AddButton = c => c.Marked("Add Task");
...

}

Creating a cross-platform UITest #1

Individual Exercise

❖ Define an interface

to abstract the

higher functions

needed for testing

❖ Tests use abstraction

to access and test

screen features –

testing logic is

completely shared

Creating cross-platform tests #2
public interface IEnterTaskScreen
{

IEnterTaskScreen SetName(string name);
IEnterTaskScreen SetNotes(string notes);
IEnterTaskScreen MarkAsDone();
IEnterTaskScreen Cancel();
IEnterTaskScreen Save();

}

IEnterTaskScreen MainTaskScreen = ...;
MainTaskScreen
.SetName("Get Milk")
.SetNotes("Buy standard and low fat milk")
.Save();

❖ Waiting for a fixed amount of time changes the way that you would

realistically wait between device differences

❖ Can also differ from device to device, based upon processor speed,

network connectivity, etc.

Waiting for UI activity

❖ Tests should not block the test thread, instead, wait for some UI element

to appear or disappear before continuing the test

Proper way to wait for UI

app.WaitForElement("add_item",
"The button to add an item did not appear",
TimeSpan.FromSeconds(5));

This waits 5 seconds for an element with the text/id "Add Item" to appear in

the visual tree of the application

Creating a cross-platform UITest #2

Individual Exercise

❖ Test methods can take a screenshot to facilitate manually test verification

Taking screenshots

return ConfigureApp
.Android // or .iOS
.EnableLocalScreenshots()
.StartApp();

[Test]
public void WelcomeTextIsDisplayed() {

app.Screenshot(
"Welcome Text is Displayed");

...
}

Must be enabled for the local

testing scenarios as part of the

configuration chain

❖ Xamarin.UITest supports a limited set of gestures for touch interaction

Gesture support

Method

SwipeLeft DoubleTap

SwipeRight DragCoordinates

ScrollUp TwoFingerTap

ScrollDown FlickCoordinates

PinchToZoomIn PinchToZoomOut

TouchAndHold ...

❖ Basic gestures are applied within a visual element – if you want to cross

multiple elements, then use the coordinate gestures

Using coordinate-based gestures

void SwipeLeftFromCenter(string containerId) {
int width, height;
GetHeightWidth(app, x => x.Marked(containerId), out width, out height);
app.DragCoordinates (width / 2, height / 2 , 0, height / 2);

}

static bool GetHeightWidth(IApp app, Func<AppQuery, AppQuery> query, out int outX, out int outY) {
outX = outY = 0;
AppResult[] queryResult = app.Query(query);
if (queryResult != null) {

AppResult result = queryResult[0];
outX = Convert.ToInt32(result.Rect.Width);
outY = Convert.ToInt32(result.Rect.Height);

}
}

❖ Xamarin.UITest supports testing hybrid apps which are HTML pages

embedded in a native application shell, however this tends to be hard to

portably test as the browser device capabilities differ significantly

Hybrid app support

app.Tap(x => x.Id("my-webview").Css("#my-button"));

Takes a regular CSS selector query – this

would tap a button with the id "my-button"

❖ IApp.Invoke lets you call methods

on the AppDelegate (iOS) and

running Activity (Android)

❖ Provides a "backdoor" to setup

specific testing scenarios without

driving the UI

❖ Xamarin methods must be marked

with [Export] to expose them to

the OS runtime

Invoking methods directly

[Export("testMethod:")]
public NSString TestMethod(NSString arg)
...

AppDelegate.cs

[Test]
public void SetupTest()
{

app.Invoke("testMethod");
}

[Export]
public string testMethod(string arg)
...

AndroidApp.cs

Flash Quiz

① Changing platforms or idioms do not require you to alter tests

a) True

b) False

Flash Quiz

① Changing platforms or idioms do not require you to alter tests

a) True

b) False

Flash Quiz

② What is the purpose of the Class selector

a) It looks for exactly the same class, including the namespace

b) It looks for full implementations of the classes interface

c) It looks for implementations of the class fully visible on the screen

Flash Quiz

② What is the purpose of the Class selector

a) It looks for exactly the same class, including the namespace

b) It looks for full implementations of the classes interface

c) It looks for implementations of the class fully visible on the screen

Flash Quiz

Run UI Tests on physical devices

1. Android Requirements

2. iOS Requirements

Tasks

❖ To deploy your applications and tests onto real devices there are a few

platform-specific requirements you will need to perform

Testing on physical devices

❖ Select the Application Binary Interfaces required for your target Android

hardware

Android build settings

must support all

processor variations

you want to run on

❖ Visual Studio for Mac Unit Tests pad will let you select the device/sim to

run on

Identifying the device to run on

Defaults to the active device or

simulator selected in the toolbar

❖ Can also specify the device identifier as part of the test configuration,

useful when more than one device or emulator is connected

Identifying the Android device

can use the ADB command line tool

to identify all the connected devices

IApp app = ConfigureApp.Android.ApkFile("/path/to/app.apk")
.DeviceSerial("05845172").StartApp();

$ adb devices
List of devices attached
05845172 device

❖ Must use debug build and include all processor variations you plan to

run against

iOS Requirements

Remember: You currently must use a Mac to build, run and submit iOS application + UI

Tests to Xamarin Test Cloud

❖ To run UI tests on iOS physical devices, you must enable UI Automation

Enabling UI Automation on iOS

NUnit Test failed (click to run)
SetUp: System.Exception : Unable to run UIAutomation
script on device. For iOS 9 and above please make sure that
"Enable UI Automation" setting is enabled. The setting can be
found here: Settings -> Developer -> Enable UI automation.

❖ Test code should identify the application by bundle and device id so it

connects to the proper running app + device

Identifying the iOS device

IApp app = ConfigureApp.iOS
.EnableLocalScreenshots()
. DeviceIdentifier(

"5665472bcab727247ba037c18a4a405b46d8611e")
.InstalledApp("com.xamarin.taskypro")
.StartApp();

❖ Can identify devices on the command line using Instruments

Getting device identifiers

$ xcrun instruments -s devices
Known Devices:
Mark’s MBPr [85E853D8-E91A-5DE8-A465-7CAAD4CC7ECC]
Mark’s iPhone (8.3) [5665472bcab727247ba037c18a4a405b46d8611e]
iPad 2 (7.1 Simulator) [EC6C3A52-C6E8-4A70-BB21-A4E7DE1CE8A5]
iPad 2 (8.3 Simulator) [468D36E3-3120-46BD-9FCB-4E852B1317D0]
iPad Air (7.1 Simulator) [CE1837EB-E7C5-4057-B374-C5C28398DC84]
iPad Air (8.3 Simulator) [733F7AA8-948C-4089-A74E-2D6558F6FE4B]
iPhone 4s (7.1 Simulator) [053B64CF-A564-4F82-B665-C967F1DFFBD7]
iPhone 4s (8.3 Simulator) [0BE9E503-2A5E-4F1C-AFFA-6D2BAECBE7B5]
...

❖ … or using the Xcode Devices window

Getting device identifiers

❖ Can also identify by bundle and IP address for a WiFi connected device

Identifying the iOS device

IApp app = ConfigureApp.iOS
.EnableLocalScreenshots()
. DeviceIp("10.0.0.79")
.InstalledApp("com.xamarin.taskypro")
.StartApp();

❖ Can run tests on devices from Visual Studio for Mac – just like running

on the simulators, or from the command line using nunit-console

Running your UI Tests

❖ Can add the PreferIdeSettings flag to the configuration chain to

ensure that IDE settings override the direct settings applied

Mixing command-line and IDE settings

return ConfigureApp
.iOS
.PreferIdeSettings()
.DeviceIdentifier("96d5b77bc5b727247b8037018ada405b46d8611e")
.InstalledApp("com.xamarin.samples.taskyprotouch")
.StartApp();

Deploy Xamarin.UITests to a local device

Individual Exercise

Thank You!

Please complete the class survey in your profile:

university.xamarin.com/profile

